Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 92102 by  M±th+et+s last updated on 04/May/20

how can we factorize   x^5 −1  ?

howcanwefactorizex51?

Commented by mathmax by abdo last updated on 05/May/20

complex method z^5 =1   with z =re^(iθ)  ⇒r^5  e^(i5θ)  =e^(i2kπ)  ⇒  r=1 and θ_k =((2kπ)/5)     k∈[[0,4]] so the roots are z_k =e^(i((2kπ)/5))   z_0 =1  ,z_1 =e^((i2π)/5)    , z_2 =e^(i((4π)/5))  ,   z_3 =e^(i((6π)/5))     ,  z_4 =e^(i((8π)/5))   we see z_1 ^−   =e^(−((k2π)/5))  =z_4    and  z_2 ^−  =z_3  ⇒  z^5 −1 =Π_(k=0) ^4 (z−z_k ) =(z−1)(z−z_1 )(z−z_1 ^− )(z−z_2 )(z−z_2 ^− )  =(z−1)(z^2  −2Re(z_1 )z +1)(z^2  −2Re(z_2 )z +1) ⇒  x^5 −1 =(x−1)(x^2 −2cos(((2π)/5))x+1)(x^2 −2cos(((4π)/5))x+1)  we have cos(((4π)/5)) =−cos((π/5)) =−((1+(√5))/4)  cos(((2π)/5)) =2cos^2 ((π/5))−1 =2×(((1+(√5))/4))^2  −1  =(1/8)(6+2(√5))−1 =((6+2(√5)−8)/8) =((−2+2(√5))/8) =((−1+(√5))/4) ⇒  x^5 −1 =(x−1)(x^2 −((−1+(√5))/2)x+1)(x^2 +((1+(√5))/2)x+1) ⇒  x^5 −1=(x−1)(x^2  +((1−(√5))/2)x +1)(x^2  +((1+(√5))/2)x +1)

complexmethodz5=1withz=reiθr5ei5θ=ei2kπr=1andθk=2kπ5k[[0,4]]sotherootsarezk=ei2kπ5z0=1,z1=ei2π5,z2=ei4π5,z3=ei6π5,z4=ei8π5weseez1=ek2π5=z4andz2=z3z51=k=04(zzk)=(z1)(zz1)(zz1)(zz2)(zz2)=(z1)(z22Re(z1)z+1)(z22Re(z2)z+1)x51=(x1)(x22cos(2π5)x+1)(x22cos(4π5)x+1)wehavecos(4π5)=cos(π5)=1+54cos(2π5)=2cos2(π5)1=2×(1+54)21=18(6+25)1=6+2588=2+258=1+54x51=(x1)(x21+52x+1)(x2+1+52x+1)x51=(x1)(x2+152x+1)(x2+1+52x+1)

Commented by  M±th+et+s last updated on 05/May/20

i am speachless . god bless you sir

iamspeachless.godblessyousir

Commented by mathmax by abdo last updated on 06/May/20

you are welcome sir.

youarewelcomesir.

Answered by niroj last updated on 04/May/20

  x^6 −1= (x^3 )^2 −(1)^2     = (x^3 +1)(x^3 −1)   = (x+1)(x^2 −x+1)(x−1)(x^2 +x+1)   = (x^2 −1)(x^2 +1−x)(x^2 +1+x)   =  (x^2 −1){(x^2 +1)^2 −(x)^2 }  = (x^2 −1)(x^4 +2x^2 +1−x^2 )  = (x^2 −1)(x^4 +x^2 +1) //.

x61=(x3)2(1)2=(x3+1)(x31)=(x+1)(x2x+1)(x1)(x2+x+1)=(x21)(x2+1x)(x2+1+x)=(x21){(x2+1)2(x)2}=(x21)(x4+2x2+1x2)=(x21)(x4+x2+1)//.

Commented by MJS last updated on 04/May/20

right. but it′s better to have square factors  =(x^2 −1)(x^2 −x+1)(x^2 +x+1)

right.butitsbettertohavesquarefactors=(x21)(x2x+1)(x2+x+1)

Commented by niroj last updated on 04/May/20

������

Commented by john santu last updated on 05/May/20

����

Answered by niroj last updated on 04/May/20

   x^5 −1= (x−1)(x^4 +x^3 +x^2 +x+1)     = x(x^4 +x^3 +x^2 +x+1)−1(x^4 +x^3 +x^2 +x+1)    = x^5 +x^4 +x^3 +x^2 +x−x^4 −x^3 −x^2 −x−1     =x^5 −1 //.

x51=(x1)(x4+x3+x2+x+1)=x(x4+x3+x2+x+1)1(x4+x3+x2+x+1)=x5+x4+x3+x2+xx4x3x2x1=x51//.

Commented by niroj last updated on 04/May/20

��

Commented by  M±th+et+s last updated on 04/May/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com