Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92134 by mathmax by abdo last updated on 05/May/20

find ∫_(−1) ^1  (e^x /(√(1−x^2 )))dx

find11ex1x2dx

Commented by mathmax by abdo last updated on 05/May/20

we use the approximation  ∫_(−1) ^1  ((f(x))/(√(1−x^2 )))dx ∼(π/n)Σ_(k=1) ^n  f(cos((((2k−1)π)/(2n))))  ⇒∫_(−1) ^1  (e^x /(√(1−x^2 )))dx ∼(π/n)Σ_(k=1) ^n  e^(cos((((2k−1)π)/(2n))))   let take n=3 ⇒∫_(−1) ^1  (e^x /(√(1−x^2 )))dx ∼(π/3){ e^(cos((π/6)))  +e^(cos(((3π)/6)))  +e^(cos(((5π)/6))) }  =(π/3){ e^((√3)/2)  + 1 + e^(−((√3)/2)) } =(π/3){2ch(((√3)/2))+1} ⇒  ∫_(−1) ^1  (e^x /(√(1−x^2 )))dx ∼ (π/3) +((2π)/3)ch(((√3)/2))

weusetheapproximation11f(x)1x2dxπnk=1nf(cos((2k1)π2n))11ex1x2dxπnk=1necos((2k1)π2n)lettaken=311ex1x2dxπ3{ecos(π6)+ecos(3π6)+ecos(5π6)}=π3{e32+1+e32}=π3{2ch(32)+1}11ex1x2dxπ3+2π3ch(32)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com