All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 92156 by abdomathmax last updated on 05/May/20
find∫01xe−x2ln(1+x)dx
Commented by mathmax by abdo last updated on 08/May/20
I=∫01xe−x2ln(1+x)dxbypsrtsI=[−12e−x2ln(1+x)]01+12∫01e−x21+xdx=−12e−1ln(2)+12∫01e−x21+xdx∫01e−x21+xdx=1+x=t∫12e−(t−1)2tdt=∫12e−t2+2t−1tdt=e−1∫12e−t2+2ttdt=e−1∫121t∑n=0∞(−t2+2t)nn!dt=e−1∫12(1t+1t∑n=1∞(−t2+2t)nn!)dt=e−1ln(2)+e−1∑n=1∞∫12tn−1(2−t)nn!dt⇒I=12e∑n=1∞Ann!withAn=∫12tn−1(2−t)ndt....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com