Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92156 by abdomathmax last updated on 05/May/20

find ∫_0 ^1   xe^(−x^2 ) ln(1+x)dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{xe}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$

Commented by mathmax by abdo last updated on 08/May/20

I =∫_0 ^1  x e^(−x^2 ) ln(1+x)dx  by psrts  I =[−(1/2)e^(−x^2 ) ln(1+x)]_0 ^1 +(1/2)∫_0 ^1  (e^(−x^2 ) /(1+x))dx  =−(1/2)e^(−1) ln(2)+(1/2)∫_0 ^1  (e^(−x^2 ) /(1+x))dx  ∫_0 ^1  (e^(−x^2 ) /(1+x))dx =_(1+x=t)    ∫_1 ^2  (e^(−(t−1)^2 ) /t)dt =∫_1 ^2  (e^(−t^2 +2t −1) /t)dt  =e^(−1)  ∫_1 ^2  (e^(−t^2  +2t) /t) dt =e^(−1)  ∫_1 ^2 (1/t)Σ_(n=0) ^∞  (((−t^2 +2t)^n )/(n!))dt  =e^(−1)  ∫_1 ^2 ((1/t)+(1/t)Σ_(n=1) ^∞  (((−t^2 +2t)^n )/(n!)))dt  =e^(−1) ln(2) +e^(−1)  Σ_(n=1) ^∞  ∫_1 ^2   ((t^(n−1) (2−t)^n )/(n!))dt  ⇒  I = (1/(2e))Σ_(n=1) ^∞  (A_n /(n!))    with  A_n =∫_1 ^2  t^(n−1) (2−t)^n  dt ....be continued...

$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}+{x}\right){dx}\:\:{by}\:{psrts} \\ $$$${I}\:=\left[−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{x}}{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\mathrm{1}} {ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{x}}{dx}\:=_{\mathrm{1}+{x}={t}} \:\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{e}^{−\left({t}−\mathrm{1}\right)^{\mathrm{2}} } }{{t}}{dt}\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{e}^{−{t}^{\mathrm{2}} +\mathrm{2}{t}\:−\mathrm{1}} }{{t}}{dt} \\ $$$$={e}^{−\mathrm{1}} \:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{e}^{−{t}^{\mathrm{2}} \:+\mathrm{2}{t}} }{{t}}\:{dt}\:={e}^{−\mathrm{1}} \:\int_{\mathrm{1}} ^{\mathrm{2}} \frac{\mathrm{1}}{{t}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{{n}} }{{n}!}{dt} \\ $$$$={e}^{−\mathrm{1}} \:\int_{\mathrm{1}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{t}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−{t}^{\mathrm{2}} +\mathrm{2}{t}\right)^{{n}} }{{n}!}\right){dt} \\ $$$$={e}^{−\mathrm{1}} {ln}\left(\mathrm{2}\right)\:+{e}^{−\mathrm{1}} \:\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{t}^{{n}−\mathrm{1}} \left(\mathrm{2}−{t}\right)^{{n}} }{{n}!}{dt}\:\:\Rightarrow \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}{e}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{A}_{{n}} }{{n}!}\:\:\:\:{with}\:\:{A}_{{n}} =\int_{\mathrm{1}} ^{\mathrm{2}} \:{t}^{{n}−\mathrm{1}} \left(\mathrm{2}−{t}\right)^{{n}} \:{dt}\:....{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com