Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 92277 by  M±th+et+s last updated on 05/May/20

find a,b,c,d    if    f(x)=ax^3 +bx^2 +cx+d  (3,3)is maximum value  (5,1) is minimum value  (4,2) is inflection point

finda,b,c,diff(x)=ax3+bx2+cx+d(3,3)ismaximumvalue(5,1)isminimumvalue(4,2)isinflectionpoint

Commented by  M±th+et+s last updated on 06/May/20

thank you sir but if we put x=3   f(3)=((27)/3)−4(9)+15(3)−((46)/3)  f(3)=18−((46)/3)=(8/3)  but in the question f(3)=3 ??

thankyousirbutifweputx=3f(3)=2734(9)+15(3)463f(3)=18463=83butinthequestionf(3)=3??

Commented by john santu last updated on 06/May/20

it does mean question inconsistent  f ′(x)= 3ax^2 +2bx+c = 0  has roots x=5 & x = 3   3a(x−5)(x−3)≡ 3ax^2 +2bx+c  3a(x^2 −8x+15)≡3ax^2 +2bx+c  2b=−24a ⇒ b = −12a  c = 45a  f(x) = ax^3 −12ax^2 +45a+d  (3,3) ⇒ 3 =27a−108a+135a +d  (4,2)⇒ 2= 64a−192a+90a+d

itdoesmeanquestioninconsistentf(x)=3ax2+2bx+c=0hasrootsx=5&x=33a(x5)(x3)3ax2+2bx+c3a(x28x+15)3ax2+2bx+c2b=24ab=12ac=45af(x)=ax312ax2+45a+d(3,3)3=27a108a+135a+d(4,2)2=64a192a+90a+d

Commented by  M±th+et+s last updated on 06/May/20

i think the right solution is  a=(1/2)   b=−6  c=((45)/(  2))  d=−24  f(x)=(1/2)x^3 −6x^2 +((45)/2)x−24  f(3)=((27)/2)−54+((45)/2)(3)−24=3  f(5)=((125)/2)−150+((225)/2)−24=1  f(4)=32−96+90−24=2    f ′(x)=(3/2)x^2 −12x+((45)/2)  f′(x)=0    x_1 =3 , x_2 =5  f′′(x)=3x−12      f′′(x)=0    x=4

ithinktherightsolutionisa=12b=6c=452d=24f(x)=12x36x2+452x24f(3)=27254+452(3)24=3f(5)=1252150+225224=1f(4)=3296+9024=2f(x)=32x212x+452f(x)=0x1=3,x2=5f(x)=3x12f(x)=0x=4

Commented by john santu last updated on 06/May/20

just two equations are enough. ����

Answered by MJS last updated on 06/May/20

ax^3 +bx^2 +cx+d=y  3ax^2 +2bx+c=y′  6ax+2b=y′′  (3,3) ∈f(x)  27a+9b+3c+d=3 (I)  (3,3) max  27a+6b+c=0 (II)  (5,1) ∈f(x)  125a+25bb+5c+d=1 (III)  (5,1) min  75a+10b+c=0 (IV)  (4,2) ∈f(x)  64a+16b+4c+d=2 (V)  (4,2) inflection  24a+2b=0 (VI)  6 equations and only 4 unknowns  too much info might be inconsistent  but in this case solving the system leads to  a=(1/2), b=−6, c=((45)/2), d=−24

ax3+bx2+cx+d=y3ax2+2bx+c=y6ax+2b=y(3,3)f(x)27a+9b+3c+d=3(I)(3,3)max27a+6b+c=0(II)(5,1)f(x)125a+25bb+5c+d=1(III)(5,1)min75a+10b+c=0(IV)(4,2)f(x)64a+16b+4c+d=2(V)(4,2)inflection24a+2b=0(VI)6equationsandonly4unknownstoomuchinfomightbeinconsistentbutinthiscasesolvingthesystemleadstoa=12,b=6,c=452,d=24

Commented by MJS last updated on 06/May/20

yes. we need only 4 equations to solve. if we  have more we must check if they fit together

yes.weneedonly4equationstosolve.ifwehavemorewemustcheckiftheyfittogether

Commented by  M±th+et+s last updated on 06/May/20

thank you sir now it′s easy to solve  from   (1) and (3) we get   −98a−16b−2c=2 .........(7)  from (7) and (2)  we get   −44a−4b=2........(8)  from (8) and (6) we get  2a=1⇒⇒a=(1/2)⇒⇒b=−6  from (2) we get c=((45)/2)  from(1) we get d=−24

thankyousirnowitseasytosolvefrom(1)and(3)weget98a16b2c=2.........(7)from(7)and(2)weget44a4b=2........(8)from(8)and(6)weget2a=1⇒⇒a=12⇒⇒b=6from(2)wegetc=452from(1)wegetd=24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com