Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92397 by john santu last updated on 06/May/20

∫ (1/(x−(√(1−x^2 )))) dx   [ x = sin w ]   ∫ ((cos w dw)/(sin w−cos w)) = ∫ (dw/(tan w−1))  = ∫ ((sec^2  w dw)/((tan w−1)sec^2  w))  = ∫ (du/((u−1)(u^2 +1))) ; [ u = tan w ]   = ∫ (du/(2(u−1)))−∫ ((u du )/(2(u^2 +1)))  = (1/2)ln ∣u−1∣ −(1/4)ln∣u^2 +1∣ −(1/2)tan^(−1) (u) +c  = (1/2)ln∣tan w−1∣−(1/4)ln∣tan^2 w+1∣−  (1/2) tan^(−1) (tan w) +c  = (1/2)ln∣(x/(√(1−x^2 )))−1∣+(1/4)ln∣1−x^2 ∣−  (1/2)sin^(−1) (x) + c

1x1x2dx[x=sinw]coswdwsinwcosw=dwtanw1=sec2wdw(tanw1)sec2w=du(u1)(u2+1);[u=tanw]=du2(u1)udu2(u2+1)=12lnu114lnu2+112tan1(u)+c=12lntanw114lntan2w+112tan1(tanw)+c=12lnx1x21+14ln1x212sin1(x)+c

Commented by abdomathmax last updated on 07/May/20

I =∫  (dx/(x−(√(1−x^2 ))))  we do the changement x =sint ⇒  I =∫    ((cost)/(sint−cost))dt  =_(tan((t/2))=u)    ∫   (((1−u^2 )/(1+u^2 ))/(((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 ))))×((2du)/(1+u^2 ))  =∫   ((1−u^2 )/((1+u^2 )(2u−1+u^2 )))du  =−∫  ((u^2 −1)/((u^2  +1)(u^2 +2u−1)))du let decompose  F(u) =((u^2 −1)/((u^2  +1)(u^2  +2u−1)))  u^2  +2u−1=0→Δ^′  =2 ⇒u_1 =−1+(√2) and  u_2 =−1−(√2) ⇒F(u)=((u^2 −1)/((u−u_1 )(u−u_2 )(u^2  +1)))  =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =((u_1 ^2 −1)/(2(√2)(u_1 ^2  +1)))  , b =−((u_2 ^2 −1)/(2(√2)(u_2 ^2  +1)))  lim_(u→0) uF(u) =0 =a+b +c ⇒c=−a−b  F(u) =(a/(u−u_1 )) +(b/(u−u_2 )) +(((−a−b)u+d)/(u^2  +1))  F(0)=1 =−(a/u_1 )−(b/u_2 ) +d ⇒d =1+(a/u_1 )+(b/u_2 )  ∫ F(u)du =aln∣u−u_1 ∣+bln∣u−u_2 ∣+(c/2) ln(u^2  +1)  +d arctanu +λ  =aln∣tan((1/2)arcsinx)−u_1 ∣+bln∣tan((1/2)arcsinx)∣  +(c/2)ln(1+tan^2 ((1/2)arcsinx))+d arctan(tan((1/2)arcsinx)) +λ  rest to simplify a ,b,c,d...

I=dxx1x2wedothechangementx=sintI=costsintcostdt=tan(t2)=u1u21+u22u1+u21u21+u2×2du1+u2=1u2(1+u2)(2u1+u2)du=u21(u2+1)(u2+2u1)duletdecomposeF(u)=u21(u2+1)(u2+2u1)u2+2u1=0Δ=2u1=1+2andu2=12F(u)=u21(uu1)(uu2)(u2+1)=auu1+buu2+cu+du2+1a=u12122(u12+1),b=u22122(u22+1)limu0uF(u)=0=a+b+cc=abF(u)=auu1+buu2+(ab)u+du2+1F(0)=1=au1bu2+dd=1+au1+bu2F(u)du=alnuu1+blnuu2+c2ln(u2+1)+darctanu+λ=alntan(12arcsinx)u1+blntan(12arcsinx)+c2ln(1+tan2(12arcsinx))+darctan(tan(12arcsinx))+λresttosimplifya,b,c,d...

Commented by john santu last updated on 07/May/20

��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com