All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 92397 by john santu last updated on 06/May/20
∫1x−1−x2dx[x=sinw]∫coswdwsinw−cosw=∫dwtanw−1=∫sec2wdw(tanw−1)sec2w=∫du(u−1)(u2+1);[u=tanw]=∫du2(u−1)−∫udu2(u2+1)=12ln∣u−1∣−14ln∣u2+1∣−12tan−1(u)+c=12ln∣tanw−1∣−14ln∣tan2w+1∣−12tan−1(tanw)+c=12ln∣x1−x2−1∣+14ln∣1−x2∣−12sin−1(x)+c
Commented by abdomathmax last updated on 07/May/20
I=∫dxx−1−x2wedothechangementx=sint⇒I=∫costsint−costdt=tan(t2)=u∫1−u21+u22u1+u2−1−u21+u2×2du1+u2=∫1−u2(1+u2)(2u−1+u2)du=−∫u2−1(u2+1)(u2+2u−1)duletdecomposeF(u)=u2−1(u2+1)(u2+2u−1)u2+2u−1=0→Δ′=2⇒u1=−1+2andu2=−1−2⇒F(u)=u2−1(u−u1)(u−u2)(u2+1)=au−u1+bu−u2+cu+du2+1a=u12−122(u12+1),b=−u22−122(u22+1)limu→0uF(u)=0=a+b+c⇒c=−a−bF(u)=au−u1+bu−u2+(−a−b)u+du2+1F(0)=1=−au1−bu2+d⇒d=1+au1+bu2∫F(u)du=aln∣u−u1∣+bln∣u−u2∣+c2ln(u2+1)+darctanu+λ=aln∣tan(12arcsinx)−u1∣+bln∣tan(12arcsinx)∣+c2ln(1+tan2(12arcsinx))+darctan(tan(12arcsinx))+λresttosimplifya,b,c,d...
Commented by john santu last updated on 07/May/20
��������
Terms of Service
Privacy Policy
Contact: info@tinkutara.com