Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92420 by I want to learn more last updated on 06/May/20

Commented by mathmax by abdo last updated on 07/May/20

I =∫  (dx/(cos^6 x +sin^6 x)) ⇒ I =∫   (dx/((cos^2 x)^3  +(sin^2 x)^3 ))  =∫  (dx/((cos^2 x+sin^2 x)^3 −3cos^2 x sin^2 x(cos^2 x+sin^2 x)))  =∫  (dx/(1−3cos^2 x sin^2 x)) =∫  (dx/(1−3((1/2)sin(2x))^2 )) =∫  (dx/(1−3×(1/4)sin^2 (2x)))  =4 ∫  (dx/(4−3sin^2 (2x))) =4 ∫   (dx/(4−3×((1−cos(4x))/2)))   =8 ∫   (dx/(8−3 +3cos(4x))) =8 ∫  (dx/(5+3cos(4x))) =_(4x=t)  2 ∫  (dt/(5+3cost))  =_(tan((t/2))=u)     2 ∫  (1/(5+3 ×((1−u^2 )/(1+u^2 ))))×((2du)/(1+u^2 ))  =4 ∫   (du/(5+5u^2  +3−3u^2 )) =4 ∫   (du/(8+2u^2 )) =2 ∫  (du/(4+u^2 ))  =_(u =4α)    2 ∫  ((4dα)/(4+4α^2 )) = 2 ∫  (dα/(1+α^2 )) =2arctan(α)+C  =2arctan((u/4)) +C =2 arctan((1/4)tan((t/2))) +C  =2arctan((1/4)tan(2x)) +C

I=dxcos6x+sin6xI=dx(cos2x)3+(sin2x)3=dx(cos2x+sin2x)33cos2xsin2x(cos2x+sin2x)=dx13cos2xsin2x=dx13(12sin(2x))2=dx13×14sin2(2x)=4dx43sin2(2x)=4dx43×1cos(4x)2=8dx83+3cos(4x)=8dx5+3cos(4x)=4x=t2dt5+3cost=tan(t2)=u215+3×1u21+u2×2du1+u2=4du5+5u2+33u2=4du8+2u2=2du4+u2=u=4α24dα4+4α2=2dα1+α2=2arctan(α)+C=2arctan(u4)+C=2arctan(14tan(t2))+C=2arctan(14tan(2x))+C

Commented by I want to learn more last updated on 12/May/20

Thanks sir

Thankssir

Answered by niroj last updated on 06/May/20

    ∫ ((  1)/(cos^6 x+sin^6 x))dx   = ∫ ((  1)/((sin^2 x)^3 +(cos^2 x)^3 ))dx  = ∫ ((  dx)/((sin^2 x+cos^2 x)(sin^4 x−sin^2 x cos^2 x+cos^4 x)))  = ∫ (1/((sin^2 x+cos^2 x)^2 −2sin^2 x cos^2 x−sin^2 x cos^2 x))dx   = ∫ (1/(1−3sin^2 xcos^2 x))dx   = ∫ ((sec^2 x)/(sec^2 x−3tan^2 x))dx   = ∫  ((sec^2 xdx)/(sec^2 x−tan^2 x−2tan^2 x))   = ∫ (( sec^2 x dx)/(1−2tan^2 x))    Put ,  tan x= t            sec^2 xdx= dt       ∫  (1/(1−2t^2 ))dt    =   (1/2)∫  ((  1)/((1/(2 )) −t^2 ))dt    = (1/2)∫  ((  1)/(((√(1/2))  )^2 −(t)^2 ))dt   = (1/2) .(1/(2(√(1/2)))) log (( (√(1/2)) +t)/( (√(1/2))−t)) +C   = (1/2)×(1/(2×(1/(√2))))log  (((1/(√2)) +t)/((1/(√2))−t))+C    = ((√2)/4) log  ((1+ t(√2))/(1−t(√2))) +C    = ((√2)/4)×((√2)/(√2)) log  ((1+tan x(√2))/(1−tan x (√2))) +C    =  (1/(2(√2))) log  ((1+ tan x (√2))/(1−tan x (√2))) +C //.

1cos6x+sin6xdx=1(sin2x)3+(cos2x)3dx=dx(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=1(sin2x+cos2x)22sin2xcos2xsin2xcos2xdx=113sin2xcos2xdx=sec2xsec2x3tan2xdx=sec2xdxsec2xtan2x2tan2x=sec2xdx12tan2xPut,tanx=tsec2xdx=dt112t2dt=12112t2dt=121(12)2(t)2dt=12.1212log12+t12t+C=12×12×12log12+t12t+C=24log1+t21t2+C=24×22log1+tanx21tanx2+C=122log1+tanx21tanx2+C//.

Commented by I want to learn more last updated on 06/May/20

Thanks sir. I appreciate

Thankssir.Iappreciate

Commented by niroj last updated on 06/May/20

����

Answered by niroj last updated on 07/May/20

Such type also you can Apply:     ∫ (1/(cos^6 x+sin^6 x))dx    dived numerator & denominator by cos^6 x.     = ∫ ((sec^6 x dx)/(1+tan^6 x))    = ∫ ((  sec^4 x. sec^2 x dx)/((1)^3 +(tan^2 x)^3 ))   = ∫(((sec^2 x)^2  sec^2 xdx)/((1+tan^2 x)(1−tan^2 x+tan^4 x)))  = ∫(((1+tan^2 x)^2 sec^2 xdx)/((1+tan^2 x)(1−tan^2 x+tan^4 x)))    Put ,  tan x=t       sec^2 xdx=dt     ∫ (((1+t^2 )^2 dt)/((1+t^2 )(t^4 −t^2 +1)))    = ∫ (((1+t^2 )dt)/(t^4 −t^2 +1))    = ∫ ((t^2 (1+(1/t^2 )))/(t^2 (t^2 −1+(1/t^2 ))))dt   = ∫  (((1+(1/t^2 ))dt)/(t^2 −1+(1/t^2 )))= ∫ (((1+(1/t^2 ))dt)/((t−(1/t))^2 +2−1))   Put, (t−(1/t))=m     (1+(1/t^2 ))dt=dm      ∫ (( 1)/(m^2 +1))dm= tan^(−1) m +C    = tan^(−1) (t−(1/t))+C    = tan^(−1) (tan x −(1/(tan x)))+C   = tan^(−1) (tan x−cot x) +C //.

SuchtypealsoyoucanApply:1cos6x+sin6xdxdivednumerator&denominatorbycos6x.=sec6xdx1+tan6x=sec4x.sec2xdx(1)3+(tan2x)3=(sec2x)2sec2xdx(1+tan2x)(1tan2x+tan4x)=(1+tan2x)2sec2xdx(1+tan2x)(1tan2x+tan4x)Put,tanx=tsec2xdx=dt(1+t2)2dt(1+t2)(t4t2+1)=(1+t2)dtt4t2+1=t2(1+1t2)t2(t21+1t2)dt=(1+1t2)dtt21+1t2=(1+1t2)dt(t1t)2+21Put,(t1t)=m(1+1t2)dt=dm1m2+1dm=tan1m+C=tan1(t1t)+C=tan1(tanx1tanx)+C=tan1(tanxcotx)+C//.

Commented by I want to learn more last updated on 07/May/20

Thanks sir, i appreciate your time

Thankssir,iappreciateyourtime

Commented by niroj last updated on 07/May/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com