Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92421 by mhmd last updated on 06/May/20

∫((cscx)/(cos(2x)+2cos^2 x))dx  pleas sir help me

cscxcos(2x)+2cos2xdxpleassirhelpme

Answered by niroj last updated on 07/May/20

  ∫  ((  cosec x)/(cos 2x+ 2cos^2 x))dx    = ∫ ((  cosec x dx)/(cos^2 x−sin^2 x+2cos^2 x))   = ∫ ((  cosec x dx)/(3cos^2 x−sin^2 x))          =  ∫  ((cosec x dx)/(3cos^2 x−1+cos^2 x))    =  ∫  (1/(sinx ( 4cos^2 x−1 )))dx    = ∫ (1/(sin x (4cos^2 x−1)))dx   = ∫ (( sin x dx)/(sin^2 x(4cos^2 x−1)))   = ∫ ((  sin xdx)/((1−cos^2 x)(4cos^2 x−1)))    Put ,  cos x=t               sin xdx= −dt     ∫ ((  −dt)/((1−t^2 )(4t^2 −1)))= ∫ ((−dt)/(−(t^2 −1)(4t^2 −1)))   ∫ (( 1)/((t^2 −1)(4t^2 −1)))dt    According to partial fraction,     −(4/3)∫ (1/(t^2 −1))dt+ (1/3)∫ (1/(4t^2 −1))dt     = (1/3)∫((  1)/((2t)^2 −(1)^2 ))dt−(4/3)∫ (1/((t)^2 −(1)^2 ))dt    =(1/3).(1/(2.1)).(1/2)log ((2t−1)/(2t+1)) −(4/3)log ((t−1)/(t+1))  +  C    = (1/(12)) log ((2cos x−1)/(2cos x+1)) − (4/3) log ((cos x−1)/(cos x+1)) +C

cosecxcos2x+2cos2xdx=cosecxdxcos2xsin2x+2cos2x=cosecxdx3cos2xsin2x=cosecxdx3cos2x1+cos2x=1sinx(4cos2x1)dx=1sinx(4cos2x1)dx=sinxdxsin2x(4cos2x1)=sinxdx(1cos2x)(4cos2x1)Put,cosx=tsinxdx=dtdt(1t2)(4t21)=dt(t21)(4t21)1(t21)(4t21)dtAccordingtopartialfraction,431t21dt+1314t21dt=131(2t)2(1)2dt431(t)2(1)2dt=13.12.1.12log2t12t+143logt1t+1+C=112log2cosx12cosx+143logcosx1cosx+1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com