All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 92421 by mhmd last updated on 06/May/20
∫cscxcos(2x)+2cos2xdxpleassirhelpme
Answered by niroj last updated on 07/May/20
∫cosecxcos2x+2cos2xdx=∫cosecxdxcos2x−sin2x+2cos2x=∫cosecxdx3cos2x−sin2x=∫cosecxdx3cos2x−1+cos2x=∫1sinx(4cos2x−1)dx=∫1sinx(4cos2x−1)dx=∫sinxdxsin2x(4cos2x−1)=∫sinxdx(1−cos2x)(4cos2x−1)Put,cosx=tsinxdx=−dt∫−dt(1−t2)(4t2−1)=∫−dt−(t2−1)(4t2−1)∫1(t2−1)(4t2−1)dtAccordingtopartialfraction,−43∫1t2−1dt+13∫14t2−1dt=13∫1(2t)2−(1)2dt−43∫1(t)2−(1)2dt=13.12.1.12log2t−12t+1−43logt−1t+1+C=112log2cosx−12cosx+1−43logcosx−1cosx+1+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com