Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 92577 by jagoll last updated on 08/May/20

lim_(x→∞)  ((ln x)/x)

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}} \\ $$

Commented by Tony Lin last updated on 08/May/20

lim_(x→∞) ((lnx)/x)  =lim_(x→∞) ((1/x)/1)  (Hospital theorem)  =0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{lnx}}{{x}} \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{1}}\:\:\left({Hospital}\:{theorem}\right) \\ $$$$=\mathrm{0} \\ $$

Commented by jagoll last updated on 08/May/20

thank you.  1 way via L′Hopital   1 way via squeeze theorem

$$\mathrm{thank}\:\mathrm{you}. \\ $$$$\mathrm{1}\:\mathrm{way}\:\mathrm{via}\:\mathrm{L}'\mathrm{Hopital}\: \\ $$$$\mathrm{1}\:\mathrm{way}\:\mathrm{via}\:\mathrm{squeeze}\:\mathrm{theorem}\: \\ $$

Commented by turbo msup by abdo last updated on 08/May/20

let x=(1/t)  x→+∞ ⇒t→0   lim_(x→+∞) ((lnx)/x) =lim_(t→0^+ )  −tln(t)=0

$${let}\:{x}=\frac{\mathrm{1}}{{t}}\:\:{x}\rightarrow+\infty\:\Rightarrow{t}\rightarrow\mathrm{0}\: \\ $$$${lim}_{{x}\rightarrow+\infty} \frac{{lnx}}{{x}}\:={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:−{tln}\left({t}\right)=\mathrm{0} \\ $$

Answered by john santu last updated on 08/May/20

⇒ln(x) = ∫_1 ^( x) (1/t) dt ≤ ∫ _1 ^( x) 1 dt   ln(x) ≤ x , ∀x ≥ 1   ln((√x)) ≤(√x)   ((ln(x))/2)≤ (√x) ⇒ln(x)≤2(√x)  ((ln(x))/x) ≤ ((2(√x))/x) = (2/(√x))   by squeeze theorem   lim_(x→∞)  ((ln(x))/x) ≤ lim_(x→∞)  (2/(√x))   lim_(x→∞)  ((ln(x))/x) = 0

$$\Rightarrow\mathrm{ln}\left(\mathrm{x}\right)\:=\:\int_{\mathrm{1}} ^{\:{x}} \frac{\mathrm{1}}{\mathrm{t}}\:\mathrm{dt}\:\leqslant\:\int\underset{\mathrm{1}} {\overset{\:\mathrm{x}} {\:}}\mathrm{1}\:\mathrm{dt}\: \\ $$$$\mathrm{ln}\left(\mathrm{x}\right)\:\leqslant\:\mathrm{x}\:,\:\forall\mathrm{x}\:\geqslant\:\mathrm{1}\: \\ $$$$\mathrm{ln}\left(\sqrt{\mathrm{x}}\right)\:\leqslant\sqrt{\mathrm{x}}\: \\ $$$$\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{2}}\leqslant\:\sqrt{\mathrm{x}}\:\Rightarrow\mathrm{ln}\left(\mathrm{x}\right)\leqslant\mathrm{2}\sqrt{\mathrm{x}} \\ $$$$\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:\leqslant\:\frac{\mathrm{2}\sqrt{\mathrm{x}}}{\mathrm{x}}\:=\:\frac{\mathrm{2}}{\sqrt{\mathrm{x}}}\: \\ $$$$\mathrm{by}\:\mathrm{squeeze}\:\mathrm{theorem}\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:\leqslant\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}}{\sqrt{\mathrm{x}}}\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:=\:\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com