Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 92605 by som(math1967) last updated on 08/May/20

If ((1+x)/(1+(√(1+x)))) +((1−x)/(1−(√(1−x)))) =1  find x

If1+x1+1+x+1x11x=1findx

Commented by behi83417@gmail.com last updated on 08/May/20

(((1+x)(1−(√(1+x))))/(−x))+(((1−x)(1+(√(1−x))))/x)=1  ⇒(1+x)(√(1+x))−(1+x)+(1−x)(√(1−x))+(1−x)=x  ⇒(1+x)(√(1+x))+(1−x)(√(1−x))=3x  (−1<x<1,x≠0,let:x=cos2t)⇒  2c^2 .(√2)c+2s^2 .(√2)s=3(c^2 −s^2 )  ⇒2(√2)(c^3 +s^3 )=3(c^2 −s^2 )  ⇒2(√2)(c+s)(c^2 +s^2 −cs)=3(c+s)(c−s)  1.c+s=0⇒(√2)cos(t−(π/4))=0⇒t=(π/4)(≡x=0:not ok)  ⇒2(√2)(1−cs)=3(c−s)  ⇒8(1−2cs+c^2 s^2 )=9(c^2 +s^2 −2cs)  ⇒8c^2 s^2 +2cs−1=0  ⇒cs=((−1±(√(1+8)))/8)=(1/4),−(1/2)  1.   cs=(1/4)⇒sin2t=(1/2)⇒x=cos2t=((√3)/2)  2.   cs=−(1/2)⇒sin2t=−1⇒x=cos2t=0 [not ok]

(1+x)(11+x)x+(1x)(1+1x)x=1(1+x)1+x(1+x)+(1x)1x+(1x)=x(1+x)1+x+(1x)1x=3x(1<x<1,x0,let:x=cos2t)2c2.2c+2s2.2s=3(c2s2)22(c3+s3)=3(c2s2)22(c+s)(c2+s2cs)=3(c+s)(cs)1.c+s=02cos(tπ4)=0t=π4(x=0:notok)22(1cs)=3(cs)8(12cs+c2s2)=9(c2+s22cs)8c2s2+2cs1=0cs=1±1+88=14,121.cs=14sin2t=12x=cos2t=322.cs=12sin2t=1x=cos2t=0[notok]

Commented by Tony Lin last updated on 08/May/20

let (√(1+x))=a,(√(1−x))=b,a^2 +b^2 =2  (a^2 /(1+a))+(b^2 /(1−b))=1  a^2 −a^2 b+b^2 +ab^2 =1+a−b−ab  1−ab(a−b)−(a−b)+ab=0  (1+ab)[1−(a−b)]=0  a−b=1 or ab=−1(false)  (√(1+x))−(√(1−x))=1  1+x=(1+(√(1−x)))^2   2x−1=2(√(1−x))  4x^2 −4x+1=4−4x  x^2 =(3/4)  x=±((√3)/2)  but ((1−((√3)/2))/(1+(√(1−((√3)/2)))))+((1+((√3)/2))/(1−(√(1+((√3)/2)))))<0 (−5)  ∴x=((√3)/2)

let1+x=a,1x=b,a2+b2=2a21+a+b21b=1a2a2b+b2+ab2=1+abab1ab(ab)(ab)+ab=0(1+ab)[1(ab)]=0ab=1orab=1(false)1+x1x=11+x=(1+1x)22x1=21x4x24x+1=44xx2=34x=±32but1321+132+1+3211+32<0(5)x=32

Commented by som(math1967) last updated on 08/May/20

Thanks sir

Thankssir

Commented by som(math1967) last updated on 08/May/20

Thanks sir

Thankssir

Answered by MJS last updated on 08/May/20

−1≤x≤1∧x≠0  (((1+x)(1−(√(1+x))))/x)+(((1−x)(1+(√(1−x))))/x)=1  (1+x)^(3/2) +(1−x)^(3/2) =3x  0<x≤1  x=sin^2  t  cos^3  t +(1+sin^2  t)^(3/2) =3sin^2  t  (1+sin^2  t)^3 =(3sin^2  t −cos^3  t)^2   sin t =s∧cos t =c∧s=(√(1−c^2 ))  c^6 +3c^5 +(3/2)c^4 −3c^3 −3c^2 +(1/2)=0  c=z−1  z^6 −3z^5 +(3/2)z^4 +z^3 =0  z^3 (z−2)(z^2 −z−(1/2))=0  (c−1)(c+1)^3 (c^2 +c−(1/2))=0  cos t =±1∨cos t =−(1/2)±((√3)/2)  ⇒ only solution is  cos t =−(1/2)+((√3)/2) ⇒ sin^2  t =x=((√3)/2)

1x1x0(1+x)(11+x)x+(1x)(1+1x)x=1(1+x)3/2+(1x)3/2=3x0<x1x=sin2tcos3t+(1+sin2t)3/2=3sin2t(1+sin2t)3=(3sin2tcos3t)2sint=scost=cs=1c2c6+3c5+32c43c33c2+12=0c=z1z63z5+32z4+z3=0z3(z2)(z2z12)=0(c1)(c+1)3(c2+c12)=0cost=±1cost=12±32onlysolutioniscost=12+32sin2t=x=32

Commented by som(math1967) last updated on 08/May/20

Thank you sir

Thankyousir

Commented by MJS last updated on 08/May/20

you′re welcome  it′s also possible to square it:  (1−x)^(3/2) +(1+x)^(3/2) =3x  6x^2 +2+2(1−x)^(3/2) (1+x)^(3/2) =9x^2   2(1−x)^(3/2) (1+x)^(3/2) =3x^2 −2  4(1−x)^3 (1+x)^3 =(3x^2 −2)^2   4x^6 −3x^4 =0  x^4 (4x^2 −3)=0  0<x≤1 ⇒ x=((√3)/2)

yourewelcomeitsalsopossibletosquareit:(1x)3/2+(1+x)3/2=3x6x2+2+2(1x)3/2(1+x)3/2=9x22(1x)3/2(1+x)3/2=3x224(1x)3(1+x)3=(3x22)24x63x4=0x4(4x23)=00<x1x=32

Commented by som(math1967) last updated on 08/May/20

Nice sir thanks again

Nicesirthanksagain

Terms of Service

Privacy Policy

Contact: info@tinkutara.com