Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92668 by john santu last updated on 08/May/20

∫_0 ^p  (√(x/(c−x))) dx ?

p0xcxdx?

Commented by john santu last updated on 08/May/20

set t = (√(x/(c−x))) , x = ((ct^2 )/(1+t^2 ))    dx = ((2ct dt)/((1+t^2 )^2 ))   I = ∫_0 ^(√(p/(c−p))) ((  2ct^2  dt)/((1+t^2 )^2 ))   I= −c [(t/(1+t^2 ))]_0 ^(√(p/(c−p))) + c[tan^(−1)  t]_0 ^(√(p/(c−p)))   =−c [((√(p/(c−p)))/(1+(p/(c−p)))) ] +c [tan^(−1)  (√(p/(c−p)))]

sett=xcx,x=ct21+t2dx=2ctdt(1+t2)2I=pcp02ct2dt(1+t2)2I=c[t1+t2]0pcp+c[tan1t]0pcp=c[pcp1+pcp]+c[tan1pcp]

Commented by mathmax by abdo last updated on 08/May/20

I =∫_0 ^p (√(x/(c−x)))dx  changement x=csin^2 t give  I =∫_0 ^(arcsin((√(p/c)))) (√((csin^2 t)/(ccos^2 t)))2csint cost  =2c∫_0 ^(arcsin((√(p/c))))  ((sint)/(cost)) sint cost dt =2c ∫_0 ^(arcsin((√(p/c))))  ((1−cos(2t))/2)dt  =c arcsin((√(p/c)))−(c/2) [sin(2t)]_0 ^(arcsin((√(p/c))))  +λ  =c arcsin((√(p/c)))−c[sint (√(1−sin^2 t))]_0 ^(arcsin((√(p/c))))  +λ  =c arcsin((√(p/c)))−c(√(p/c))(√(1−(p/c))) +λ  =c arcsin((√(p/c)))−(√(p(c−p))) +λ

I=0pxcxdxchangementx=csin2tgiveI=0arcsin(pc)csin2tccos2t2csintcost=2c0arcsin(pc)sintcostsintcostdt=2c0arcsin(pc)1cos(2t)2dt=carcsin(pc)c2[sin(2t)]0arcsin(pc)+λ=carcsin(pc)c[sint1sin2t]0arcsin(pc)+λ=carcsin(pc)cpc1pc+λ=carcsin(pc)p(cp)+λ

Answered by behi83417@gmail.com last updated on 08/May/20

x=c.cos^2 t⇒dx=−2csint.costdt  ⇒I=∫((cost)/(sint)).(−2c.sint.cost)dt=  =−∫2ccos^2 tdt=−c∫(1+cos2t)dt=  =−c(t+sint.cost)+const.=  =−c.cos^(−1) (√((x/c) ))−(√(cx−x^2 ))+const.  [I=∫_0 ^p (√(x/(c−x)))=((c.π)/2)−c.cos^(−1) (√(p/c))−(√(c.p−p^2 ))]  [cost=(√(x/c)),sint=(√(1−(x/c))) ]

x=c.cos2tdx=2csint.costdtI=costsint.(2c.sint.cost)dt==2ccos2tdt=c(1+cos2t)dt==c(t+sint.cost)+const.==c.cos1xccxx2+const.[I=p0xcx=c.π2c.cos1pcc.pp2][cost=xc,sint=1xc]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com