All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 92702 by i jagooll last updated on 08/May/20
y″+2y′−3y=ex+e2x
Answered by niroj last updated on 08/May/20
y″+2y′−3y=ex+e2xd2ydx2+2dydx−3y=ex+e2x(D2+2D−3)y=ex+e2xA.E.m2+2m−3=0m2+3x−m−3=0m(m+3)−1(m+3)=0(m+3)(m−1)=0m=1,−3CF=C1ex+C2e−3xPI=1D2+2D−3(ex+e2x)=exD2+2D−3+e2xD2+2D−3=xex2D+2+e2x4+4−3=xex2×1+2+e2x5=xex4+e2x5y=CF+PIy=C1ex+C1e−3x+xex4+e2x5//.
Answered by Rio Michael last updated on 08/May/20
theA−levelthoughtmethod.auxillaryequation:m2+2m−3=0⇒(m+3)(m−1)⇔m=−3orm=1yc.f=Aex+Be−3xnowyp.i=λxex+μe2xy′=λxex+λex+2μe2xy″=λxex+2λex+4μe2x⇒λxex+2λex+4μe2x+2λxex+2λex+4μe2x−3λxex−3μe2x=ex+e2x⇒(4λ−1)ex+(5μ−1)e2x=04λ−1=0and5μ−1=0⇔λ=14andμ=15yp.i=xex4+e2x5y=ycf+yp.iy=Aex+Be−x+xex4+e2x5
Terms of Service
Privacy Policy
Contact: info@tinkutara.com