Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 92717 by mr W last updated on 08/May/20

Commented by i jagooll last updated on 09/May/20

(1) x^3 +9x^2 y = 10  (2) 27y^3 +27xy^2  = 54  (1)+(2)  x^3 +9x^2 y+27xy^2 +27y^3 =64  (x+3y)^3 =4^3  ⇒x+3y=4  x = 4−3y  ⇒y^3 +(4−3y)y^2 =2  −2y^3 +4y^2 −2=0  y^3 −2y^2 +1=0  (y−1)(y^2 −y−1)=0  y=1 ⇒x = 1  y= ((1± (√5))/2) ⇒ x=4−(((3±3(√5))/2))  x= ((5 ∓ 3(√5))/2)

(1)x3+9x2y=10(2)27y3+27xy2=54(1)+(2)x3+9x2y+27xy2+27y3=64(x+3y)3=43x+3y=4x=43yy3+(43y)y2=22y3+4y22=0y32y2+1=0(y1)(y2y1)=0y=1x=1y=1±52x=4(3±352)x=5352

Commented by mr W last updated on 09/May/20

result not correct sir, i got:  x=4−3y  y^3 +(4−3y)y^2 =2  y^3 −2y^2 +1=0  y^3 −y^2 −y^2 +y−y+1=0  (y−1)y^2 −(y−1)y−(y−1)=0  (y−1)(y^2 −y−1)=0  y=1⇒x=1  y=((1±(√5))/2)⇒x=((5∓3(√5))/2)

resultnotcorrectsir,igot:x=43yy3+(43y)y2=2y32y2+1=0y3y2y2+yy+1=0(y1)y2(y1)y(y1)=0(y1)(y2y1)=0y=1x=1y=1±52x=5352

Commented by i jagooll last updated on 09/May/20

dear Mr W. it correct?

dearMrW.itcorrect?

Commented by i jagooll last updated on 09/May/20

o yes sir. i typo

oyessir.itypo

Commented by john santu last updated on 09/May/20

greeatm..������

Answered by Rasheed.Sindhi last updated on 08/May/20

x^2 (x+9y)=10  y^2 (x+y)=2  (x^2 /y^2 )×(1+((8y)/(x+y)))=5  ((x/y))^2 (1+(1/((x+y)/(8y))))=5  ((x/y))^2 (1+(1/((1/8)((x/y))+(1/8))))=5  u^2 (1+(1/((1/8)(u+1))))=5  u^2 ((((1/8)(u+1)+1)/((1/8)(u+1))))=5    (1/8)u^2 (u+1)+u^2 =(5/8)(u+1)  u^2 (u+1)+8u^2 =5(u+1)  u^3 +9u^2 −5u−5=0  Don′t know to solve cubic equation.  .........  .....

x2(x+9y)=10y2(x+y)=2x2y2×(1+8yx+y)=5(xy)2(1+1x+y8y)=5(xy)2(1+118(xy)+18)=5u2(1+1(1/8)(u+1))=5u2((1/8)(u+1)+1(1/8)(u+1))=5(1/8)u2(u+1)+u2=(5/8)(u+1)u2(u+1)+8u2=5(u+1)u3+9u25u5=0Dontknowtosolvecubicequation...............

Commented by Rio Michael last updated on 08/May/20

mind if i continue?  u = 1 ⇒ (1)^3  + 9(1)^2  −5(1) −(5) = 0  ⇒ if f(u) = u^3  + 9u^2 −5u−5  then u −1 is a factor hence  f(u) = (u−1)(u+5−(√(20)) )(u +5 + (√(20)))   u = 1 or u = (√(20)) − 5 or u = −5−(√(20))

mindificontinue?u=1(1)3+9(1)25(1)(5)=0iff(u)=u3+9u25u5thenu1isafactorhencef(u)=(u1)(u+520)(u+5+20)u=1oru=205oru=520

Commented by mr W last updated on 08/May/20

thank you both!

thankyouboth!

Commented by Ar Brandon last updated on 09/May/20

�� I love this spirit. Keep up Men.��

Commented by Rasheed.Sindhi last updated on 13/May/20

7ank5 5ir for encouraging!

Answered by $@ty@m123 last updated on 10/May/20

((x^3 +9x^2 y)/(y^3 +xy^2 ))=5  ((((x/y))^3 +9((x/y))^2 )/(1+((x/y))))=5  t^3 +9t^2 −5t−5=0  {where t=(x/y)  t^3 −t^2 +10t^2 −10t+5t−5=0  t^2 (t−1)+10t(t−1)+5(t−1)=0  (t−1)(t^2 +10t+5)=0  t=1, t=((−10±(√(100−20)))/2)  t=1, t=−5±2(√5)  Case 1. t=1  x=y=1.  Case 2. t=−5+2(√5)  ⇒x=(−5+2(√5))y  ⇒y^3 +(−5+2(√5))y^3 =2  (−4+2(√5))y^3 =2  y^3 =(1/(−2+(√5)))  y^3 =(1/((√5)−2))×(((√5)+2)/((√5)+2))  =(((√5)+2)/(5−4))=(√5)+2  y=((√5)+2)^(1/3)   x=(−5+2(√5))((√5)+2)^(1/3)   Case 3. t=−5−2(√5)  .....  .....

x3+9x2yy3+xy2=5(xy)3+9(xy)21+(xy)=5t3+9t25t5=0{wheret=xyt3t2+10t210t+5t5=0t2(t1)+10t(t1)+5(t1)=0(t1)(t2+10t+5)=0t=1,t=10±100202t=1,t=5±25Case1.t=1x=y=1.Case2.t=5+25x=(5+25)yy3+(5+25)y3=2(4+25)y3=2y3=12+5y3=152×5+25+2=5+254=5+2y=(5+2)13x=(5+25)(5+2)13Case3.t=525..........

Terms of Service

Privacy Policy

Contact: info@tinkutara.com