All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 92799 by Ar Brandon last updated on 09/May/20
Showthatthefunctionx→x3isofRiemannwithintheinterval[−1,2]thencalculate∫−12x2dx
Commented by mathmax by abdo last updated on 09/May/20
∫−12x2dx=[13x3]−12=13(23−(−1)3)=13(8+1)=3weknow∫abf(x)dx=limn→∞b−an∑k=1nf(a+k(b−a)n)⇒∫−12x2dx=x=t−1∫03(t−1)2dt=∫03(t2−2t+1)dt=∫03t2dt−2∫03tdt+3∫03t2dt=limn→+∞3n∑k=1n(3kn)2=limn→+∞27n3×n(n+1)(2n+1)6=limn→+∞276×2n3n3=9∫03tdt=limn→+∞3n∑k=1n3kn=limn→+∞9n2×n(n+1)2=92⇒∫−12x2dx=9−2×92+3=3
Commented by Ar Brandon last updated on 10/May/20
thanks bro
Terms of Service
Privacy Policy
Contact: info@tinkutara.com