Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92805 by niroj last updated on 09/May/20

 Evaluate:   ∫_R ∫ ((xy)/(√(1−y^2 ))) dx dy where the region of integration is the   positive quadrant of the circle x^2 +y^2 =1.

Evaluate:Rxy1y2dxdywheretheregionofintegrationisthepositivequadrantofthecirclex2+y2=1.

Answered by mr W last updated on 09/May/20

=∫_0 ^(π/2) ∫_0 ^1 ((r^2 cos θ sin θ)/(√(1−r^2 sin^2  θ)))rdrdθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (r^2 /(√(1−r^2 sin^2  θ)))dr^2 )dθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(∫_0 ^1 (u/(√(1−u sin^2  θ)))du)dθ  =(1/2)∫_0 ^(π/2) cos θ sin θ(1/(sin^2  θ)){∫_0 ^1 [−(√(1−u sin^2  θ))+(1/(√(1−u sin^2  θ)))]du}dθ  =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2  θ))(1−u sin^2  θ)^(3/2) −(2/(sin^2  θ))(√(1−u sin^2  θ))]_0 ^1 }dθ  =(1/2)∫_0 ^(π/2) ((cos θ)/(sin θ)){[(2/(3 sin^2  θ))(1−sin^2  θ)^(3/2) −(2/(3 sin^2  θ))−(2/(sin^2  θ))(√(1−sin^2  θ))+(2/(sin^2  θ))]}dθ  =(1/3)∫_0 ^(π/2) ((cos θ)/(sin θ))[((cos^3  θ−3cos θ+2)/(sin^2  θ))]dθ  =(1/3)∫_(π/2) ^0 (((cos^3  θ−3cos θ+2)cos θ)/((1−cos^2  θ)^2 ))d(cos θ)  =(1/3)∫_0 ^1 (((t^3 −3t+2)t)/((1−t^2 )^2 ))dt  =(1/3)∫_0 ^1 (((t+2)t)/((t+1)^2 ))dt  =(1/3)∫_0 ^1 [1−(1/((t+1)^2 ))]dt  =(1/3)[t+(1/(t+1))]_0 ^1   =(1/3)(1+(1/2)−1)  =(1/6)

=0π201r2cosθsinθ1r2sin2θrdrdθ=120π2cosθsinθ(01r21r2sin2θdr2)dθ=120π2cosθsinθ(01u1usin2θdu)dθ=120π2cosθsinθ1sin2θ{01[1usin2θ+11usin2θ]du}dθ=120π2cosθsinθ{[23sin2θ(1usin2θ)322sin2θ1usin2θ]01}dθ=120π2cosθsinθ{[23sin2θ(1sin2θ)3223sin2θ2sin2θ1sin2θ+2sin2θ]}dθ=130π2cosθsinθ[cos3θ3cosθ+2sin2θ]dθ=13π20(cos3θ3cosθ+2)cosθ(1cos2θ)2d(cosθ)=1301(t33t+2)t(1t2)2dt=1301(t+2)t(t+1)2dt=1301[11(t+1)2]dt=13[t+1t+1]01=13(1+121)=16

Commented by niroj last updated on 09/May/20

Thank you Mr. W It is aspected result ��������

Commented by Ar Brandon last updated on 09/May/20

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com