Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 92925 by frc2crc last updated on 09/May/20

S_n =Σ_(k=1) ^∞ (1/((4k^2 −1)^n ))  find a simpler form

Sn=k=11(4k21)nfindasimplerform

Commented by mr W last updated on 09/May/20

check your question please.  Σ_(k=1) ^(n or ∞)

checkyourquestionplease.nork=1

Commented by frc2crc last updated on 09/May/20

Σ_(k=1) ^∞ (1/((4k^2 −1)^n )) this sum for any n>0

k=11(4k21)nthissumforanyn>0

Commented by prakash jain last updated on 09/May/20

series is convergent for n≥1. We  can use limit comparion test.  n=1  (1/(4k^2 −1))=(1/2)((1/(2k−1))−(1/(2k+1)))  ⇒Σ_(k=1) ^∞ (1/(4k^2 −1))=(1/2)  n=2 can be evaluated using  known series expansion for π^2 .  −−−−−  I will check if a generic closed  form formula is possible.  It may exists using zeta function.

seriesisconvergentforn1.Wecanuselimitcompariontest.n=114k21=12(12k112k+1)k=114k21=12n=2canbeevaluatedusingknownseriesexpansionforπ2.Iwillcheckifagenericclosedformformulaispossible.Itmayexistsusingzetafunction.

Commented by abdomathmax last updated on 10/May/20

let take a try  let decompose F(x) =(1/((4x^2 −1)^n ))  =(1/((2x−1)^n (2x+1)^n )) changement 2x−1 =t give  x=((t+1)/2) ⇒2x+1 =t+2 ⇒F(x)=g(t)=(1/(t^n (t+2)^n ))  g(t) =Σ_(i=1) ^n  (a_i /t^i ) +Σ_(i=1) ^n  (b_i /((t+2)^i ))   what is a_i ?  we find D_(n−1) (0) for h(t) =(t+2)^(−n)  by taylor  seri we get h(t) =Σ_(p=0) ^(n−1)  ((h^((p)) (0))/((p)!)) t^p  +(t^n /(n!))ξ(t)  h^, (t) =−n(t+2)^(−n−1)    h^((2)) (t) =−n(−n−1)(t+2)^(−n−2)  =(−1)^2 n(n+1)(t+2)^(−n−2)   h^((p)) (x) =(−1)^p n(n+1)...(n+p−1)(t+2)^(−n−p)   ⇒h^((p)) (0) =(−1)^p n(n+1)....(n+p−1)2^(−n−p)  ⇒  h(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p! 2^(n+p) )) t^p  +(t^n /(n!))ξ(t) ⇒  g(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p!2^(n+p)  t^(n−p) )) +(1/(n!))ξ(t)  =_(n−p =i)   Σ_(i=1) ^n  (((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!2^(2n−i)  t^i )) +...  ⇒a_i =(((−1)^(n−i) n(n+1)....(2n−i−1))/((n−i)! ×2^(2n−i) ))  what is b_i ? we determine D_(n−1) (−2) for h(t)=t^(−n)   h(t) =Σ_(p=0) ^(n−1)  ((h^((p)) (−2))/(p!)) (t+2)^p +(((t+2)^n )/(n!))ξ(t)  h^((p)) (t)=(−1)^p n(n+1)...(n+p−1)t^(−n−p)   ⇒h^((p)) (−2) =(−1)^p n(n+1)...(n+p−1)(−2)^(−n−p)  ⇒  h(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1)(−2)^(−n−p) )/(p!))(t+2)^p  +...  ⇒g(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p!(−2)^(n+p)  (t+2)^(n−p) )) +(1/(n!))ξ(t)  =_(n−p=i)    Σ_(i=1) ^n (((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!(−2)^(2n−i) (t+2)^i ))+...⇒  b_i =(((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!(−2)^(2n−i) ))  ...be continued....

lettakeatryletdecomposeF(x)=1(4x21)n=1(2x1)n(2x+1)nchangement2x1=tgivex=t+122x+1=t+2F(x)=g(t)=1tn(t+2)ng(t)=i=1naiti+i=1nbi(t+2)iwhatisai?wefindDn1(0)forh(t)=(t+2)nbytaylorseriwegeth(t)=p=0n1h(p)(0)(p)!tp+tnn!ξ(t)h,(t)=n(t+2)n1h(2)(t)=n(n1)(t+2)n2=(1)2n(n+1)(t+2)n2h(p)(x)=(1)pn(n+1)...(n+p1)(t+2)nph(p)(0)=(1)pn(n+1)....(n+p1)2nph(t)=p=0n1(1)pn(n+1)...(n+p1)p!2n+ptp+tnn!ξ(t)g(t)=p=0n1(1)pn(n+1)...(n+p1)p!2n+ptnp+1n!ξ(t)=np=ii=1n(1)nin(n+1)...(2ni1)(ni)!22niti+...ai=(1)nin(n+1)....(2ni1)(ni)!×22niwhatisbi?wedetermineDn1(2)forh(t)=tnh(t)=p=0n1h(p)(2)p!(t+2)p+(t+2)nn!ξ(t)h(p)(t)=(1)pn(n+1)...(n+p1)tnph(p)(2)=(1)pn(n+1)...(n+p1)(2)nph(t)=p=0n1(1)pn(n+1)...(n+p1)(2)npp!(t+2)p+...g(t)=p=0n1(1)pn(n+1)...(n+p1)p!(2)n+p(t+2)np+1n!ξ(t)=np=ii=1n(1)nin(n+1)...(2ni1)(ni)!(2)2ni(t+2)i+...bi=(1)nin(n+1)...(2ni1)(ni)!(2)2ni...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com