Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 124446 by ZiYangLee last updated on 03/Dec/20

∫_(−2) ^2 (x^3 cos (x/2)+(1/2))(√(4−x^2 ))dx=?

$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} \mathrm{cos}\:\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }{dx}=? \\ $$

Answered by Ar Brandon last updated on 03/Dec/20

I=∫_(−2) ^2 (x^3 cos(x/2)+(1/2))(√(4−x^2 ))dx     =(1/2)∫_(−2) ^2 (√(4−x^2 ))dx=(1/2){((x(√(4−x^2 )))/2)+(4/2)Arcsin((x/2))}_(−2) ^2      =(π/2)−(−(π/2))=π

$$\mathcal{I}=\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \mathrm{cos}\frac{\mathrm{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{x}\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{4}}{\mathrm{2}}\mathrm{Arcsin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right\}_{−\mathrm{2}} ^{\mathrm{2}} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{2}}−\left(−\frac{\pi}{\mathrm{2}}\right)=\pi \\ $$

Commented by Ar Brandon last updated on 03/Dec/20

∫_(−a) ^a f(x)dx= { ((0 if f(x) is odd)),((2∫_0 ^a f(x)dx if f(x) is even)) :}  ∫(√(a^2 −x^2 ))dx=(1/2)x(√(a^2 −x^2 ))+(a^2 /2)sin^(−1) ((x/a))+C  Can be proved by setting x=asinθ

$$\int_{−\mathrm{a}} ^{\mathrm{a}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\begin{cases}{\mathrm{0}\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{odd}}\\{\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{a}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{even}}\end{cases} \\ $$$$\int\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C} \\ $$$${Can}\:{be}\:{proved}\:{by}\:{setting}\:{x}={asin}\theta \\ $$

Answered by Dwaipayan Shikari last updated on 03/Dec/20

∫_(−2) ^2 (x^3 cos(x/2)+(1/2))(√(4−x^2 )) dx  =∫_(−2) ^2 (−x^3 cos(x/2)+(1/2))(√(4−x^2 )) dx=I  2I=∫_(−2) ^2 (√(4−x^2 )) dx  2I=∫_(−2) ^2 (√(4−x^2 )) dx =∫_(−1) ^1 (√(4−4sin^2 θ))  dθ     x=2sinθ⇒1=2cosθ(dθ/dx)  =2∫_0 ^(π/2) 1+cos2θ= π+2∫_0 ^(π/2) cos2θ =π+(1/2)[sin2θ]_0 ^(π/2) =π

$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:\:=\int_{−\mathrm{2}} ^{\mathrm{2}} \left(−{x}^{\mathrm{3}} {cos}\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}={I} \\ $$$$\mathrm{2}{I}=\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{2}{I}=\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{4}−\mathrm{4}{sin}^{\mathrm{2}} \theta}\:\:{d}\theta\:\:\:\:\:{x}=\mathrm{2}{sin}\theta\Rightarrow\mathrm{1}=\mathrm{2}{cos}\theta\frac{{d}\theta}{{dx}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{1}+{cos}\mathrm{2}\theta=\:\pi+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\mathrm{2}\theta\:=\pi+\frac{\mathrm{1}}{\mathrm{2}}\left[{sin}\mathrm{2}\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\pi \\ $$

Commented by Dwaipayan Shikari last updated on 03/Dec/20

Another way  2I=∫_(−2) ^2 (√(4−x^2 )) dx            x=2t  I=2∫_0 ^1 (√(4−4t^2 )) dt =4∫_0 ^1 (√(1−t^2 )) dt =4∫_0 ^1 (√(1−u))  du       t^2 =u⇒2t=(du/dt)  =2∫_0 ^1 u^(−(1/2)) (1−u)^(1/2) =2.((Γ((1/2))Γ((3/2)))/(Γ(2)))=2.(((√π).(√π))/2)=π

$${Another}\:{way} \\ $$$$\mathrm{2}{I}=\int_{−\mathrm{2}} ^{\mathrm{2}} \sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx}\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{2}{t} \\ $$$${I}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{4}−\mathrm{4}{t}^{\mathrm{2}} }\:{dt}\:=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt}\:=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{u}}\:\:{du}\:\:\:\:\:\:\:{t}^{\mathrm{2}} ={u}\Rightarrow\mathrm{2}{t}=\frac{{du}}{{dt}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{2}.\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}\right)}=\mathrm{2}.\frac{\sqrt{\pi}.\sqrt{\pi}}{\mathrm{2}}=\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com