Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93031 by Power last updated on 10/May/20

Commented by Power last updated on 10/May/20

sir indefinite integration

$$\mathrm{sir}\:\mathrm{indefinite}\:\mathrm{integration} \\ $$

Commented by prakash jain last updated on 10/May/20

Assuming shx=sinh x  ∫∣sinh x∣dx  ∣sinh x∣= { ((<0 for x<0)),((≥0 for x≥0)) :}  ∫∣sinh x∣dx=signum(x)cosh (x)+C

$$\mathrm{Assuming}\:\mathrm{sh}{x}=\mathrm{sinh}\:{x} \\ $$$$\int\mid\mathrm{sinh}\:{x}\mid{dx} \\ $$$$\mid\mathrm{sinh}\:{x}\mid=\begin{cases}{<\mathrm{0}\:\mathrm{for}\:{x}<\mathrm{0}}\\{\geqslant\mathrm{0}\:\mathrm{for}\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$$$\int\mid\mathrm{sinh}\:{x}\mid\mathrm{d}{x}=\mathrm{signum}\left({x}\right)\mathrm{cosh}\:\left({x}\right)+{C} \\ $$

Commented by prakash jain last updated on 10/May/20

I think indefinite integration is   not possible for functions involving ⌊x⌋.   I may be wrong though.  If you find a solution (or even just an  answer), please share.

$$\mathrm{I}\:\mathrm{think}\:\mathrm{indefinite}\:\mathrm{integration}\:\mathrm{is}\: \\ $$$$\mathrm{not}\:\mathrm{possible}\:\mathrm{for}\:\mathrm{functions}\:\mathrm{involving}\:\lfloor{x}\rfloor.\: \\ $$$$\mathrm{I}\:\mathrm{may}\:\mathrm{be}\:\mathrm{wrong}\:\mathrm{though}. \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{solution}\:\left(\mathrm{or}\:\mathrm{even}\:\mathrm{just}\:\mathrm{an}\right. \\ $$$$\left.\mathrm{answer}\right),\:\mathrm{please}\:\mathrm{share}. \\ $$

Commented by Power last updated on 10/May/20

Commented by prakash jain last updated on 10/May/20

Which book?

$$\mathrm{Which}\:\mathrm{book}? \\ $$

Commented by Power last updated on 10/May/20

find the beginning of the function in the book

$$\mathrm{find}\:\mathrm{the}\:\mathrm{beginning}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{in}\:\mathrm{the}\:\mathrm{book} \\ $$

Commented by Power last updated on 10/May/20

from uzbek books

$$\mathrm{from}\:\mathrm{uzbek}\:\mathrm{books} \\ $$

Commented by Power last updated on 10/May/20

sir answer : ((⌊x⌋)/π)(⌊x⌋−(−1)^(⌊x⌋) cos(πx))

$$\mathrm{sir}\:\mathrm{answer}\::\:\frac{\lfloor\mathrm{x}\rfloor}{\pi}\left(\lfloor\mathrm{x}\rfloor−\left(−\mathrm{1}\right)^{\lfloor\mathrm{x}\rfloor} \mathrm{cos}\left(\pi\mathrm{x}\right)\right) \\ $$

Commented by prakash jain last updated on 10/May/20

Thanks. I will try solving it.

Commented by mathmax by abdo last updated on 10/May/20

I =∫_0 ^∞ [x] ∣sin(πx)∣ dx ⇒ I =Σ_(n=0) ^∞  ∫_n ^(n+1) n∣sin(πx)∣ dx  =Σ_(n=0) ^∞  n A_n   with A_n =∫_n ^(n+1) ∣sin(πx)∣dx  A_n =_(x=n+t)     ∫_0 ^1  ∣sin(π(n+t)∣ dt =∫_0 ^1 ∣sin(πn +πt)∣dt  =∫_0 ^1 ∣(−1)^n  cos(πt)∣ dt =∫_0 ^1  ∣cos(πt)∣dt  =_(πt =u)    ∫_0 ^π  ∣cos(u)∣(du/π) =(1/π) { ∫_0 ^(π/2) cosu du −∫_(π/2) ^π  cosu du}  =(1/π){ [sinu]_0 ^(π/2)  −[sinu]_(π/2) ^π  } =(1/π){ 1−(−1)} =(2/π) ⇒  I =(2/π)Σ_(n=0) ^∞ n =+∞   ⇒I is divergent ...!

$${I}\:=\int_{\mathrm{0}} ^{\infty} \left[{x}\right]\:\mid{sin}\left(\pi{x}\right)\mid\:{dx}\:\Rightarrow\:{I}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} {n}\mid{sin}\left(\pi{x}\right)\mid\:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}\:{A}_{{n}} \:\:{with}\:{A}_{{n}} =\int_{{n}} ^{{n}+\mathrm{1}} \mid{sin}\left(\pi{x}\right)\mid{dx} \\ $$$${A}_{{n}} =_{{x}={n}+{t}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mid{sin}\left(\pi\left({n}+{t}\right)\mid\:{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mid{sin}\left(\pi{n}\:+\pi{t}\right)\mid{dt}\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mid\left(−\mathrm{1}\right)^{{n}} \:{cos}\left(\pi{t}\right)\mid\:{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mid{cos}\left(\pi{t}\right)\mid{dt} \\ $$$$=_{\pi{t}\:={u}} \:\:\:\int_{\mathrm{0}} ^{\pi} \:\mid{cos}\left({u}\right)\mid\frac{{du}}{\pi}\:=\frac{\mathrm{1}}{\pi}\:\left\{\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cosu}\:{du}\:−\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:{cosu}\:{du}\right\} \\ $$$$=\frac{\mathrm{1}}{\pi}\left\{\:\left[{sinu}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\left[{sinu}\right]_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:\right\}\:=\frac{\mathrm{1}}{\pi}\left\{\:\mathrm{1}−\left(−\mathrm{1}\right)\right\}\:=\frac{\mathrm{2}}{\pi}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{2}}{\pi}\sum_{{n}=\mathrm{0}} ^{\infty} {n}\:=+\infty\:\:\:\Rightarrow{I}\:{is}\:{divergent}\:...! \\ $$

Commented by mathmax by abdo last updated on 10/May/20

you have given x from [0,+∞[

$${you}\:{have}\:{given}\:{x}\:{from}\:\left[\mathrm{0},+\infty\left[\right.\right. \\ $$

Answered by prakash jain last updated on 11/May/20

f(x)=⌊x⌋∣sin πx∣  f(x)= { (0,(0≤x<1)),((∣sin πx∣),(1≤x<2)),((2∣sinπx∣ ),(2≤x<3)),((n∣sinπx∣ ),(n≤x<(n+1))) :}  f(x)=⌊x⌋∣sin πx∣  =⌊x⌋∣sin π(⌊x⌋+{x})       x=⌊x⌋+{x}  and sin (nπ+θ)=(−)^n sin θ  =⌊x⌋∣(−1)^(⌊x⌋) sin (π{x})∣  =⌊x⌋sin( π{x})    sin π{x}>0 as {x}<1  I=∫f(x)dx=∫_0 ^( x) f(t)dt+C  =∫_0 ^1 sin π{t}dt+∫_1 ^2 2sin {πt}dt+..∫_(⌊x⌋) ^x sin (πt)dt  sin (πt) is periodic with period 1  =Σ_(n=0) ^(⌊x⌋−1) ∫_0 ^1 sin πtdt+∫_(⌊x⌋) ^x sin πtdt+C  =((⌊x⌋(⌊x⌋−1))/2)[−((cos πt)/π)]_0 ^1 +⌊x⌋∫_0 ^({x}) sin πtdt+C  =(2/π)×((⌊x⌋(⌊x⌋−1))/2)+⌊x⌋[−((cos πt)/π)]_0 ^({x}) +C  =((⌊x⌋(⌊x⌋−1))/π)+((⌊x⌋)/π)(1−cos π{x})+C  =((⌊x⌋⌊x⌋)/π)+−((⌊x⌋)/π)cos( π{x})+C  =((⌊x⌋⌊x⌋)/π)+−((⌊x⌋)/π)cos( π(x−⌊x⌋)+C  =((⌊x⌋⌊x⌋)/π)+−((⌊x⌋)/π)(−1)^(⌊x⌋) cos(πx)+C

$${f}\left({x}\right)=\lfloor{x}\rfloor\mid\mathrm{sin}\:\pi{x}\mid \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{0}}&{\mathrm{0}\leqslant{x}<\mathrm{1}}\\{\mid\mathrm{sin}\:\pi{x}\mid}&{\mathrm{1}\leqslant{x}<\mathrm{2}}\\{\mathrm{2}\mid\mathrm{sin}\pi{x}\mid\:}&{\mathrm{2}\leqslant{x}<\mathrm{3}}\\{{n}\mid\mathrm{sin}\pi{x}\mid\:}&{{n}\leqslant{x}<\left({n}+\mathrm{1}\right)}\end{cases} \\ $$$${f}\left({x}\right)=\lfloor{x}\rfloor\mid\mathrm{sin}\:\pi{x}\mid \\ $$$$=\lfloor{x}\rfloor\mid\mathrm{sin}\:\pi\left(\lfloor{x}\rfloor+\left\{{x}\right\}\right) \\ $$$$\:\:\:\:\:{x}=\lfloor{x}\rfloor+\left\{{x}\right\}\:\:{and}\:\mathrm{sin}\:\left({n}\pi+\theta\right)=\left(−\right)^{{n}} \mathrm{sin}\:\theta \\ $$$$=\lfloor{x}\rfloor\mid\left(−\mathrm{1}\right)^{\lfloor{x}\rfloor} \mathrm{sin}\:\left(\pi\left\{{x}\right\}\right)\mid \\ $$$$=\lfloor{x}\rfloor\mathrm{sin}\left(\:\pi\left\{{x}\right\}\right)\:\:\:\:\mathrm{sin}\:\pi\left\{{x}\right\}>\mathrm{0}\:\mathrm{as}\:\left\{{x}\right\}<\mathrm{1} \\ $$$${I}=\int{f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\:{x}} {f}\left({t}\right){dt}+{C} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sin}\:\pi\left\{{t}\right\}{dt}+\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{2sin}\:\left\{\pi{t}\right\}{dt}+..\int_{\lfloor{x}\rfloor} ^{{x}} \mathrm{sin}\:\left(\pi{t}\right){dt} \\ $$$$\mathrm{sin}\:\left(\pi{t}\right)\:\mathrm{is}\:\mathrm{periodic}\:\mathrm{with}\:\mathrm{period}\:\mathrm{1} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\lfloor{x}\rfloor−\mathrm{1}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sin}\:\pi{tdt}+\int_{\lfloor{x}\rfloor} ^{{x}} \mathrm{sin}\:\pi{tdt}+{C} \\ $$$$=\frac{\lfloor{x}\rfloor\left(\lfloor{x}\rfloor−\mathrm{1}\right)}{\mathrm{2}}\left[−\frac{\mathrm{cos}\:\pi{t}}{\pi}\right]_{\mathrm{0}} ^{\mathrm{1}} +\lfloor{x}\rfloor\int_{\mathrm{0}} ^{\left\{{x}\right\}} \mathrm{sin}\:\pi{tdt}+{C} \\ $$$$=\frac{\mathrm{2}}{\pi}×\frac{\lfloor{x}\rfloor\left(\lfloor{x}\rfloor−\mathrm{1}\right)}{\mathrm{2}}+\lfloor{x}\rfloor\left[−\frac{\mathrm{cos}\:\pi{t}}{\pi}\right]_{\mathrm{0}} ^{\left\{{x}\right\}} +{C} \\ $$$$=\frac{\lfloor{x}\rfloor\left(\lfloor{x}\rfloor−\mathrm{1}\right)}{\pi}+\frac{\lfloor{x}\rfloor}{\pi}\left(\mathrm{1}−\mathrm{cos}\:\pi\left\{{x}\right\}\right)+{C} \\ $$$$=\frac{\lfloor{x}\rfloor\lfloor{x}\rfloor}{\pi}+−\frac{\lfloor{x}\rfloor}{\pi}\mathrm{cos}\left(\:\pi\left\{{x}\right\}\right)+{C} \\ $$$$=\frac{\lfloor{x}\rfloor\lfloor{x}\rfloor}{\pi}+−\frac{\lfloor{x}\rfloor}{\pi}\mathrm{cos}\left(\:\pi\left({x}−\lfloor{x}\rfloor\right)+{C}\right. \\ $$$$=\frac{\lfloor{x}\rfloor\lfloor{x}\rfloor}{\pi}+−\frac{\lfloor{x}\rfloor}{\pi}\left(−\mathrm{1}\right)^{\lfloor{x}\rfloor} \mathrm{cos}\left(\pi{x}\right)+{C} \\ $$

Commented by Power last updated on 11/May/20

Commented by Power last updated on 11/May/20

thanks

$$\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com