Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 9306 by tawakalitu last updated on 29/Nov/16

Differentiate from the first principle:  y = tan2x

$$\mathrm{Differentiate}\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}: \\ $$$$\mathrm{y}\:=\:\mathrm{tan2x} \\ $$

Answered by mrW last updated on 30/Nov/16

y(x)=tan (2x)  y(x+h)=tan (2x+2h)=((tan (2x)+tan (2h))/(1−tan (2x)×tan (2h)))  y(x+h)−y(x)=((tan (2x)+tan (2h))/(1−tan (2x)×tan (2h)))−tan (2x)  =((tan (2x)+tan (2h)−tan (2x)+tan^2 (2x)×tan (2h))/(1−tan (2x)×tan (2h)))    =((1+tan^2 (2x))/((1/(tan (2h)))−tan (2x)))    ((y(x+h)−y(x))/h)=((1+tan^2 (2x))/((h/(tan (2h)))−tan (2x)×h))  lim_(h→0)  (h/(tan (2h)))=lim_(h→0)  (1/(2×((tan (2h))/(2h))))=(1/2)  lim_(h→0)  tan (2x)×h=0  (dy/dx)=lim_(h→0) ((y(x+h)−y(x))/h)=((1+tan^2 (2x))/(1/2))=2[1+tan^2 (2x)]=(2/(cos^2 (2x)))

$$\mathrm{y}\left(\mathrm{x}\right)=\mathrm{tan}\:\left(\mathrm{2x}\right) \\ $$$$\mathrm{y}\left(\mathrm{x}+\mathrm{h}\right)=\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{2h}\right)=\frac{\mathrm{tan}\:\left(\mathrm{2x}\right)+\mathrm{tan}\:\left(\mathrm{2h}\right)}{\mathrm{1}−\mathrm{tan}\:\left(\mathrm{2x}\right)×\mathrm{tan}\:\left(\mathrm{2h}\right)} \\ $$$$\mathrm{y}\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{y}\left(\mathrm{x}\right)=\frac{\mathrm{tan}\:\left(\mathrm{2x}\right)+\mathrm{tan}\:\left(\mathrm{2h}\right)}{\mathrm{1}−\mathrm{tan}\:\left(\mathrm{2x}\right)×\mathrm{tan}\:\left(\mathrm{2h}\right)}−\mathrm{tan}\:\left(\mathrm{2x}\right) \\ $$$$=\frac{\mathrm{tan}\:\left(\mathrm{2x}\right)+\mathrm{tan}\:\left(\mathrm{2h}\right)−\mathrm{tan}\:\left(\mathrm{2x}\right)+\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2x}\right)×\mathrm{tan}\:\left(\mathrm{2h}\right)}{\mathrm{1}−\mathrm{tan}\:\left(\mathrm{2x}\right)×\mathrm{tan}\:\left(\mathrm{2h}\right)}\:\: \\ $$$$=\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2x}\right)}{\frac{\mathrm{1}}{\mathrm{tan}\:\left(\mathrm{2h}\right)}−\mathrm{tan}\:\left(\mathrm{2x}\right)}\:\: \\ $$$$\frac{\mathrm{y}\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{y}\left(\mathrm{x}\right)}{\mathrm{h}}=\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2x}\right)}{\frac{\mathrm{h}}{\mathrm{tan}\:\left(\mathrm{2h}\right)}−\mathrm{tan}\:\left(\mathrm{2x}\right)×\mathrm{h}} \\ $$$$\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{h}}{\mathrm{tan}\:\left(\mathrm{2h}\right)}=\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}×\frac{\mathrm{tan}\:\left(\mathrm{2h}\right)}{\mathrm{2h}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{tan}\:\left(\mathrm{2x}\right)×\mathrm{h}=\mathrm{0} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{y}\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{y}\left(\mathrm{x}\right)}{\mathrm{h}}=\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2x}\right)}{\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{2}\left[\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2x}\right)\right]=\frac{\mathrm{2}}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2x}\right)} \\ $$

Commented by tawakalitu last updated on 29/Nov/16

Thanks sir. God bless you.

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com