Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93098 by Rio Michael last updated on 10/May/20

find the general solution to   ∫ (1/(a sin x + b cos x)) dx  and ∫ (1/(a cos x − bsin x)) dx  where a , b are constants.

findthegeneralsolutionto1asinx+bcosxdxand1acosxbsinxdxwherea,bareconstants.

Commented by prakash jain last updated on 10/May/20

asin x+bcos x  =(√(a^2 +b^2 ))((a/(√(a^2 +b^2 )))sin x+(b/(√(a^2 +b^2 )))cos x)  (a/(√(a^2 +b^2 )))=cos α  (b/(√(a^2 +b^2 )))=sin α  (√(a^2 +b^2 ))=(√(a^2 +b^2 ))sin (α+x)  (1/(asin x+bcos x))=(√(a^2 +b^2 ))cosec (x+α)  now use cosec formula for integration.  −−−−−−  Same procedure can be use  (1/(asin x−bcos x))

asinx+bcosx=a2+b2(aa2+b2sinx+ba2+b2cosx)aa2+b2=cosαba2+b2=sinαa2+b2=a2+b2sin(α+x)1asinx+bcosx=a2+b2cosec(x+α)nowusecosecformulaforintegration.Sameprocedurecanbeuse1asinxbcosx

Commented by Rio Michael last updated on 10/May/20

thank you sir.

thankyousir.

Commented by abdomathmax last updated on 11/May/20

I =∫  (dx/(acosx +bsinx)) we suppose a≠0  ⇒  I =(1/a)∫     (dx/(cosx +λ sinx))  =A_λ   (λ=(b/a))  changement tan((x/2))=t give  A_λ =(1/a)∫    ((2dt)/((1+t^2 )(((1−t^2 )/(1+t^2 )) +λ((2t)/(1+t^2 )))))  aA_λ =∫   ((2dt)/(1−t^2  +2λt )) =−∫  ((2dt)/(t^2 −2λt −1))  let solve t^2 −2λt −1 =0  Δ^′  =λ^2  +1  ⇒t_1 =λ+(√(1+λ^2 ))  t_2 =λ−(√(1+λ^2 ))  aA_λ =−∫   ((2dt)/((t−t_1 )(t−t_2 )))  =−(2/(2(√(1+λ^2 )))) ∫  ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(√(1+λ^2 )))ln∣((t−t_2 )/(t−t_1 ))∣ +C  =(1/(√(1+λ^2 )))ln∣((t−λ +(√(1+λ^2 )))/(t−λ−(√(1+λ^2 ))))∣ +C  =(1/(√(1+(b^2 /a^2 ))))ln∣((t−(b/a)+(√(1+(b^2 /a^2 ))))/(t−(b/a)−(√(1+(b^2 /a^2 )))))∣ +C  =((∣a∣)/(√(a^2  +b^2 )))ln∣((((at−b)/a)+((√(a^2  +b^2 ))/(∣a∣)))/(((at−b)/a)−((√(a^2 +b^2 ))/(∣a∣))))∣ +C  if we take a>0 we get  I =(1/(√(a^2 +b^2 )))ln∣((atan((x/2))−b+(√(a^2 +b^2 )))/(atan((x/2))−b−(√(a^2  +b^2 ))))∣ +C  =  =

I=dxacosx+bsinxwesupposea0I=1adxcosx+λsinx=Aλ(λ=ba)changementtan(x2)=tgiveAλ=1a2dt(1+t2)(1t21+t2+λ2t1+t2)aAλ=2dt1t2+2λt=2dtt22λt1letsolvet22λt1=0Δ=λ2+1t1=λ+1+λ2t2=λ1+λ2aAλ=2dt(tt1)(tt2)=221+λ2(1tt11tt2)dt=11+λ2lntt2tt1+C=11+λ2lntλ+1+λ2tλ1+λ2+C=11+b2a2lntba+1+b2a2tba1+b2a2+C=aa2+b2lnatba+a2+b2aatbaa2+b2a+Cifwetakea>0wegetI=1a2+b2lnatan(x2)b+a2+b2atan(x2)ba2+b2+C==

Commented by Rio Michael last updated on 11/May/20

wow sir spendid

wowsirspendid

Commented by mathmax by abdo last updated on 11/May/20

thankx

thankx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com