Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93109 by Mikael_786 last updated on 10/May/20

∫_0 ^(2π)  cos^(2020) (x)dx

2π0cos2020(x)dx

Commented by prakash jain last updated on 11/May/20

∫_9 ^(2π) cos^(2020) xdx  ∫_0 ^π cos^(2020) xdx+∫_π ^(2π) cos^(2020) xdx          ∫_π ^(2π) cos^(2020) xdx=∫_0 ^π cos^(2020) (π+u)du           =∫_0 ^π cos^(2020) udu  ∫_9 ^(2π) cos^(2020) xdx=2∫_0 ^π cos^(2020) xdx  =2(∫_0 ^(π/2) cos^(2020) xdx+∫_(π/2) ^π cos^(2020) xdx)       substitute x=(π/2)+u to get  =4∫_0 ^( π/2) cos^(2020) xdx  =4×((2019.2017.2015...1)/(2020∙2018∙2016....2))× (π/2)

92πcos2020xdx0πcos2020xdx+π2πcos2020xdxπ2πcos2020xdx=0πcos2020(π+u)du=0πcos2020udu92πcos2020xdx=20πcos2020xdx=2(0π/2cos2020xdx+π/2πcos2020xdx)substitutex=π2+utoget=40π/2cos2020xdx=4×2019.2017.2015...1202020182016....2×π2

Commented by Mikael_786 last updated on 10/May/20

thank u Sir

thankuSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com