Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 93138 by i jagooll last updated on 11/May/20

 { ((18x^2 =3y(1+9x^2 ))),((18y^2 =3z(1+9y^2 ))),((18z^2 =3x(1+9z^2 ))) :}

{18x2=3y(1+9x2)18y2=3z(1+9y2)18z2=3x(1+9z2)

Answered by john santu last updated on 11/May/20

 { ((x^2 =(y/(6−9y)))),((y^2 = (z/(6−9z)))),((z^2  = (x/(6−9x)))) :}  (xyz)^2  = ((xyz)/((6−9x)(6−9y)(6−9z)))  (6−9x)(6−9y)(6−9z) = (1/(xyz))   { ((6−9x=(1/x)⇒x=(1/3))),((6−9y=(1/y)⇒y=(1/3))),((6−9z=(1/z)⇒z=(1/3))) :}

{x2=y69yy2=z69zz2=x69x(xyz)2=xyz(69x)(69y)(69z)(69x)(69y)(69z)=1xyz{69x=1xx=1369y=1yy=1369z=1zz=13

Answered by MJS last updated on 11/May/20

if x=y=z=c (because of symmetry) ⇒  c=0∨c=(1/3)  if x≠y≠z we get  x≈−.137591±.0972771i  y≈.0812039∓.129974i  z≈−.0372460±.147390i  and these values are interchangeable

ifx=y=z=c(becauseofsymmetry)c=0c=13ifxyzwegetx.137591±.0972771iy.0812039.129974iz.0372460±.147390iandthesevaluesareinterchangeable

Commented by i jagooll last updated on 11/May/20

how get x∈C sir ?

howgetxCsir?

Commented by MJS last updated on 11/May/20

18x^2 =3y(9x^2 +1) ⇒ y=((6x^2 )/(9x^2 +1))  18y^2 =3z(9y^2 +1) ⇒ z=((6y^2 )/(9y^2 +1))=((216x^4 )/(405x^4 +18x^2 +1))  18z^2 =3x(9z^2 +1) ⇒ 3(3x−2)z^2 +x=0  ⇒  ((583929x(x−(1/3))^2 )/((405x^4 +18x^2 +1)^2 ))(x^6 +((50)/(267))x^5 +((31)/(801))x^4 +(4/(801))x^3 +(7/(7209))x^2 +(2/(21627))x+(1/(64881)))=0  x=0∧x=(1/3) is obvious because of the first  attempt solving in R  now we must approximate with a good  calculator

18x2=3y(9x2+1)y=6x29x2+118y2=3z(9y2+1)z=6y29y2+1=216x4405x4+18x2+118z2=3x(9z2+1)3(3x2)z2+x=0583929x(x13)2(405x4+18x2+1)2(x6+50267x5+31801x4+4801x3+77209x2+221627x+164881)=0x=0x=13isobviousbecauseofthefirstattemptsolvinginRnowwemustapproximatewithagoodcalculator

Commented by i jagooll last updated on 11/May/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com