Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93193 by john santu last updated on 11/May/20

∫ ((ln(x+(√(x^2 −1))))/(√((x^2 −1)^3 ))) dx ?

ln(x+x21)(x21)3dx?

Commented by abdomathmax last updated on 14/May/20

I =∫  ((ln(x+(√(x^2 −1))))/(√((x^2 −1)^3 )))dx  vhangement x=cht give  I =∫  ((ln(cht +sht))/(√(sh^6 t))) sh(t)dt  =∫     (t/(sh^2 t)) dt  =∫   ((2t)/(ch(2t)−1))dt  =_(2t =u)    ∫    (u/(ch(u)−1))(du/2) =(1/2)∫   (u/(((e^u +e^(−u) )/2)−1))du  =∫     (u/(e^u  +e^(−u) −2)) du   =_(e^u =z)     ∫   ((ln(z))/(z+z^(−1) −2))×(dz/z)  =∫       ((lnz)/(z^2 −2z +1))dz =∫  ((lnz)/((z−1)^2 ))dx  =−(1/(z−1))ln(z)+∫  (1/(z−1))×(dz/z)  =−(1/(z−1))lnz +∫((1/(z−1))−(1/z))dz  =−(1/(z−1))lnz +ln∣((z−1)/z)∣ +C  =−(u/(e^u −1))+ln∣((e^u −1)/e^u )∣ +C  u =(t/2) =(1/2)argch(x) =(1/2)ln(x+(√(x^2 −1))) ⇒  e^u  =(√(x+(√(x^2 −1)))) ⇒  I =−((ln(x+(√(x^2 −1))))/(2((√(x+(√(x^2 −1))))))) +ln∣(((√(x+(√(x^2 −1))))−1)/(√(x+(√(x^2 −1)))))∣ +C

I=ln(x+x21)(x21)3dxvhangementx=chtgiveI=ln(cht+sht)sh6tsh(t)dt=tsh2tdt=2tch(2t)1dt=2t=uuch(u)1du2=12ueu+eu21du=ueu+eu2du=eu=zln(z)z+z12×dzz=lnzz22z+1dz=lnz(z1)2dx=1z1ln(z)+1z1×dzz=1z1lnz+(1z11z)dz=1z1lnz+lnz1z+C=ueu1+lneu1eu+Cu=t2=12argch(x)=12ln(x+x21)eu=x+x21I=ln(x+x21)2(x+x21)+lnx+x211x+x21+C

Answered by MJS last updated on 11/May/20

∫((ln (x+(√(x^2 −1))))/((x^2 −1)^(3/2) ))dx=       [t=x+(√(x^2 −1)) → dx=((√(x^2 −1))/(x+(√(x^2 −1))))dt]  =4∫((t ln t)/((t^2 −1)^2 ))dt=       by parts       u=ln t → u′=(1/t)       v′=((4t)/((t^2 −1)^2 )) → v=−(2/(t^2 −1))  =−((2ln t)/(t^2 −1))+2∫(dt/(t(t^2 −1)))=  =−((2ln t)/(t^2 −1))+ln (t^2 −1) −2ln t =  =−((2t^2 )/(t^2 −1))ln t +ln (t^2 −1) =  =−((x+(√(x^2 −1)))/(√(x^2 −1)))ln (x+(√(x^2 −1))) +ln (x^2 −1+x(√(x^2 −1))) +C

ln(x+x21)(x21)3/2dx=[t=x+x21dx=x21x+x21dt]=4tlnt(t21)2dt=bypartsu=lntu=1tv=4t(t21)2v=2t21=2lntt21+2dtt(t21)==2lntt21+ln(t21)2lnt==2t2t21lnt+ln(t21)==x+x21x21ln(x+x21)+ln(x21+xx21)+C

Commented by john santu last updated on 12/May/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com