Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 93200 by i jagooll last updated on 11/May/20

Commented by mathmax by abdo last updated on 11/May/20

let f(x) =(2^x  +3^x −12)^(tan(((πx)/4)))  ⇒ln(f(x))=tan(((πx)/4))ln(2^x  +3^x −12)  changement t=x−2 give ln(f(x))=  tan(((π(t+2))/4))ln(2^(t+2)  +3^(t+2) −12) =((ln(4 2^t  +9 .3^t −12))/(tan(((πt)/4)))) =g(t)  let u(x)=ln(4.2^t  +9.3^t −12) and v(t) =tan(((πt)/4))  (hospital)  we have lim_(t→0)  g(t) =lim_(t→0)  ((u^′ (x))/(v^′ (x)))  u^′ (x) =(((4.2^t  +9.3^t −12)^′ )/(4.2^t  +9.3^t −12))  =((4 .e^(tln2)  +9.e^(tln3) −12)^′ )/(4.2^t  +9.3^t −12))  =((4ln(2) 2^t  +9ln(3).3^t )/(4.2^t  +9 3^t −12)) ⇒lim_(t→0)  u^′ (x)=4ln(2)+9ln(3)  v^′ (t) =(π/4)(1+tan^2 (((πt)/4))) ⇒lim_(t→0)  v^′ (t) =(π/4) ⇒  lim_(t→0)  g(t) =(4/π)(4ln(2)+9ln(3)) =lim_(x→2) lnf(x) ⇒  lim_(x→2) f(x) =e^((4/π)(4ln(2)+9ln(3)))

letf(x)=(2x+3x12)tan(πx4)ln(f(x))=tan(πx4)ln(2x+3x12)changementt=x2giveln(f(x))=tan(π(t+2)4)ln(2t+2+3t+212)=ln(42t+9.3t12)tan(πt4)=g(t)letu(x)=ln(4.2t+9.3t12)andv(t)=tan(πt4)(hospital)wehavelimt0g(t)=limt0u(x)v(x)u(x)=(4.2t+9.3t12)4.2t+9.3t12=4.etln2+9.etln312)4.2t+9.3t12=4ln(2)2t+9ln(3).3t4.2t+93t12limt0u(x)=4ln(2)+9ln(3)v(t)=π4(1+tan2(πt4))limt0v(t)=π4limt0g(t)=4π(4ln(2)+9ln(3))=limx2lnf(x)limx2f(x)=e4π(4ln(2)+9ln(3))

Commented by john santu last updated on 12/May/20

sorry sir.   ((ln(4.2^t +9.3^t −12))/(cot (((π(t+2))/4)))) should be   ((ln (4.2^t +9.3^t −12))/(−tan (((πt)/4))))

sorrysir.ln(4.2t+9.3t12)cot(π(t+2)4)shouldbeln(4.2t+9.3t12)tan(πt4)

Commented by mathmax by abdo last updated on 12/May/20

yes forget the sign −

yesforgetthesign

Answered by john santu last updated on 12/May/20

lim_(w→0)  ln y = lim_(w→0)  tan ((π/4)(w+2))ln(2^(w+2) +3^(w+2) −12)  = lim_(w→0)  ((ln(2^(w+2) +3^(w+2) −12))/(cot ((π/2)+((πw)/4))))  lim_(w→0)  ((ln(2^(w+2) +3^(w+2) −12))/(−tan (((πw)/4)))) =  lim_(w→0)  ((2^(w+2)  ln2+3^(w+2)  ln3)/(2^(w+2) +3^(w+2) −12)) × (−(4/π)cos^2 (((πw)/4)))  lim_(w→0)  ln y = −(4/π) (4ln 2+ 9ln 3 )   y = e^(−(4/π) (4 ln 2 + 9 ln 3 ) ) .

limw0lny=limw0tan(π4(w+2))ln(2w+2+3w+212)=limw0ln(2w+2+3w+212)cot(π2+πw4)limw0ln(2w+2+3w+212)tan(πw4)=limw02w+2ln2+3w+2ln32w+2+3w+212×(4πcos2(πw4))limw0lny=4π(4ln2+9ln3)y=e4π(4ln2+9ln3).

Commented by i jagooll last updated on 12/May/20

yeahh...

yeahh...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com