Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93248 by i jagooll last updated on 12/May/20

∫ _0 ^1  ln(x) dx

10ln(x)dx

Commented by abdomathmax last updated on 12/May/20

∫_0 ^1 ln(x)dx =lim_(a→0^+ )   ∫_a ^1 ln(x)dx  =lim_(a→0^+ )     [xlnx−x]_a ^1    =lim_(a→0^+ )   (−1−alna+a) =−1

01ln(x)dx=lima0+a1ln(x)dx=lima0+[xlnxx]a1=lima0+(1alna+a)=1

Answered by john santu last updated on 12/May/20

D.I method   ∫_0 ^1  ln(x) dx = lim_(p→0^+ )  { ∫_p ^1  ln(x) dx }  = lim_(p→0^+ )  { x ln(x)−x }]_p ^1   = lim_(p→0^+ )  {−1+p−pln(p)}  = −1+ lim_(p→0^+ )  p(1−ln(p))  = −1+ lim_(p→0^+ )  ((1−ln(p))/(((1/p))))  =−1+ lim^(LH) _(p→0^+ )  (((−((1/p)))/(−((1/p^2 )))))   = −1 + lim_(p→0^+ )  (p) = −1+0 = −1

D.Imethod10ln(x)dx=limp0+{1pln(x)dx}=limp0+{xln(x)x}]p1=limp0+{1+ppln(p)}=1+limp0+p(1ln(p))=1+limp0+1ln(p)(1p)=1+limLHp0+((1p)(1p2))=1+limp0+(p)=1+0=1

Commented by i jagooll last updated on 12/May/20

thank you...

thankyou...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com