Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93265 by abdomathmax last updated on 12/May/20

calculate ∫_0 ^((2π)/3)   (dx/(3+sin(3x)))

calculate02π3dx3+sin(3x)

Commented by mathmax by abdo last updated on 12/May/20

A =∫_0 ^((2π)/3)  (dx/(3+sin(3x))) ⇒ A =_(3x=t)   (1/3)∫_0 ^(2π)    (dt/(3+sint))  =_(e^(it)  =z)    (1/3) ∫_(∣z∣=1)     (1/(3+((z−z^(−1) )/(2i))))×(dz/(iz))  3A =∫_(∣z∣=1)     ((2idz)/(iz(6i +z−z^(−1) ))) =∫_(∣z∣=1)     ((2dz)/(6iz +z^2 −1))  let ϕ(z) =(2/(z^2  +6iz −1))  poles of ϕ?  z^2  +6iz −1 =0→ Δ^′  =(3i)^2 +1 =−8 ⇒z_1 =−3i+2i(√2)  z_2 =−3i−2i(√2)    we have ∣z_1 ∣−1 =∣3−(√2)∣−1 =3−(√2)−1 =2−(√2)>0  ∣z_2 ∣ −1 =3+(√2)−1 =2+(√2)>0 ⇒Res(ϕ,z_1 )=Res(ϕ,z_2 )=0 ⇒  Σ Res =0 ⇒A =0

A=02π3dx3+sin(3x)A=3x=t1302πdt3+sint=eit=z13z∣=113+zz12i×dziz3A=z∣=12idziz(6i+zz1)=z∣=12dz6iz+z21letφ(z)=2z2+6iz1polesofφ?z2+6iz1=0Δ=(3i)2+1=8z1=3i+2i2z2=3i2i2wehavez11=∣321=321=22>0z21=3+21=2+2>0Res(φ,z1)=Res(φ,z2)=0ΣRes=0A=0

Answered by niroj last updated on 12/May/20

  ∫_0 ^( ((2π)/3))    (( dx)/(3 + sin (3x)))    Put , 3x= t              3dx=dt                 dx=(1/3)dt   IF x=((2π)/3) ⇒  t= 2π   IF x=0 ⇒  t=0    (1/3)∫_0 ^( 2π)   (( 1)/(3+sin t))dt     =[ (1/3)∫ ((  1)/(3+ ((2tan(t/2))/(1+tan^2 (t/2)))))dt]_0 2π   =  [  (1/3)∫(( sec^2 (t/2))/(3+3tan^2 (t/2)+2tan(t/2)))dt]_0 ^(2π)      Put, tan (t/2)= m        sec^2 (t/2)dt=2dm   [ (1/3)∫ ((2dm)/(3+3m^2 +2m))]_0 ^(2π)    = [(2/3)∫  (1/(3(m^2 +(2/3)m+1)))dm]_0 ^(2π)   = [ (2/9)∫ ((   1)/((m)^2 +2.(1/3).m+(1/9)−(1/9)+1))dm]_0 ^(2π)   = [ (2/9)∫ ((  1)/((m+(1/3))^2 −((8/9))))dm]_0 ^(2π)    = [ (2/9)∫ (1/((m+(1/3))^2 −(((√8)/3))^2 ))dm]_0 ^(2π)    = [(2/9).(1/(2.((√8)/3)))log (( m+(1/3) +((√8)/3))/(m+(1/3) −((√8)/3)))]_0 ^(2π)    =[ (1/(3(√8))) log ((3m+1+(√8))/(3m+1−(√8)))]_0 ^(2π)    = [(1/(3(√8)))log ((3 tan(t/2) +1+(√8))/(3tan(t/2) +1−(√8)))]_0 ^(2π)    = {(1/(3(√8)))log ((3tan ((2π)/2)+1+(√8))/(3tan((2π)/2)+1−(√8)))}−{(1/(3(√8)))log ((3.0+1+(√8))/(3.0+1−(√8)))}   = (1/(3(√8))) log ((1+(√8))/(1−(√8))) −(1/(3(√8)))log ((1+(√8))/(1−(√8)))  = 0 //.

02π3dx3+sin(3x)Put,3x=t3dx=dtdx=13dtIFx=2π3t=2πIFx=0t=01302π13+sintdt=[1313+2tant21+tan2t2dt]02π=[13sec2t23+3tan2t2+2tant2dt]02πPut,tant2=msec2t2dt=2dm[132dm3+3m2+2m]02π=[2313(m2+23m+1)dm]02π=[291(m)2+2.13.m+1919+1dm]02π=[291(m+13)2(89)dm]02π=[291(m+13)2(83)2dm]02π=[29.12.83logm+13+83m+1383]02π=[138log3m+1+83m+18]02π=[138log3tant2+1+83tant2+18]02π={138log3tan2π2+1+83tan2π2+18}{138log3.0+1+83.0+18}=138log1+818138log1+818=0//.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com