Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 93304 by Shakhzod last updated on 12/May/20

∫(√(tan (x)))dx Who can solve this problem?

$$\int\sqrt{\mathrm{tan}\:\left({x}\right)}{dx}\:{Who}\:{can}\:{solve}\:{this}\:{problem}? \\ $$

Commented by john santu last updated on 12/May/20

= −(1/((√2) ))tanh^(−1) ((((√(tan x))+(√(cot x)))/(√2))) +   (1/(√2))tan^(−1) ((((√(tan x))−(√(cot x)))/(√2)))+c

$$=\:−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\mathrm{tanh}\:^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}+\sqrt{\mathrm{cot}\:\mathrm{x}}}{\sqrt{\mathrm{2}}}\right)\:+\: \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}−\sqrt{\mathrm{cot}\:\mathrm{x}}}{\sqrt{\mathrm{2}}}\right)+\mathrm{c}\:\: \\ $$

Commented by i jagooll last updated on 12/May/20

cooll man ����

Commented by i jagooll last updated on 12/May/20

set u = (√(tan x)) , dx = ((2u du)/(u^4 +1))  ∫ (√(tan x)) dx = ∫ (2/(u^2 +(1/u^2 ))) du  = ∫ ((1−(1/u))/((u+(1/u))^2 −2)) du + ∫ ((1+(1/u^2 ))/((u−(1/u))^2 +2)) du  [ set u+(1/u) = tan q ], [ w=u−(1/u)]  = ∫ (1/(q^2 −2)) dq + ∫ (1/(w^2 +2)) dw   =−(1/(√2)) tanh^(−1) ((q/(√2))) +(1/(√2)) tan^(−1) ((w/(√2))) + c  = −(1/(√2)) tanh^(−1) ((((√(tan x))+(√(cot x)))/(√2)))  + (1/(√2)) tan^(−1) ((((√(tan x))−(√(cot x)))/(√2))) + c

$$\mathrm{set}\:\mathrm{u}\:=\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:,\:\mathrm{dx}\:=\:\frac{\mathrm{2u}\:\mathrm{du}}{\mathrm{u}^{\mathrm{4}} +\mathrm{1}} \\ $$$$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:=\:\int\:\frac{\mathrm{2}}{\mathrm{u}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }}\:\mathrm{du} \\ $$$$=\:\int\:\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{u}}}{\left(\mathrm{u}+\frac{\mathrm{1}}{\mathrm{u}}\right)^{\mathrm{2}} −\mathrm{2}}\:\mathrm{du}\:+\:\int\:\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} }}{\left(\mathrm{u}−\frac{\mathrm{1}}{\mathrm{u}}\right)^{\mathrm{2}} +\mathrm{2}}\:\mathrm{du} \\ $$$$\left[\:\mathrm{set}\:\mathrm{u}+\frac{\mathrm{1}}{\mathrm{u}}\:=\:\mathrm{tan}\:\mathrm{q}\:\right],\:\left[\:\mathrm{w}=\mathrm{u}−\frac{\mathrm{1}}{\mathrm{u}}\right] \\ $$$$=\:\int\:\frac{\mathrm{1}}{\mathrm{q}^{\mathrm{2}} −\mathrm{2}}\:\mathrm{dq}\:+\:\int\:\frac{\mathrm{1}}{\mathrm{w}^{\mathrm{2}} +\mathrm{2}}\:\mathrm{dw}\: \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{tanh}\:^{−\mathrm{1}} \left(\frac{\mathrm{q}}{\sqrt{\mathrm{2}}}\right)\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{w}}{\sqrt{\mathrm{2}}}\right)\:+\:\mathrm{c} \\ $$$$=\:−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{tanh}\:^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}+\sqrt{\mathrm{cot}\:\mathrm{x}}}{\sqrt{\mathrm{2}}}\right) \\ $$$$+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}−\sqrt{\mathrm{cot}\:\mathrm{x}}}{\sqrt{\mathrm{2}}}\right)\:+\:\mathrm{c}\: \\ $$

Commented by  M±th+et+s last updated on 12/May/20

at end pls check for typos and thank you

$${at}\:{end}\:{pls}\:{check}\:{for}\:{typos}\:{and}\:{thank}\:{you} \\ $$

Commented by mathmax by abdo last updated on 12/May/20

this integral is solved see the platform.

$${this}\:{integral}\:{is}\:{solved}\:{see}\:{the}\:{platform}. \\ $$

Answered by prakash jain last updated on 12/May/20

Commented by Shakhzod last updated on 12/May/20

Great. Thank you so much.

$${Great}.\:{Thank}\:{you}\:{so}\:{much}. \\ $$

Answered by  M±th+et+s last updated on 12/May/20

=(1/(√2))∫((2sin(x))/(√(sin(2x))))  (1/(√2))∫((sin(x)+cos(x)+sin(x)−cos(x))/(√(sin(2x)))).((cos(2x))/(cos(2x)))dx  =(1/(√2))∫((1+(√(sin(2x))))/(√(1−sin^2 (2x)))).((cos(2x))/(√(sin(2x))))dx+(1/(√2))∫((√(1−sin(2x)))/(√(1−sin^2 (2x)))).((cos(2x))/(√(sin(2x))))dx  =(1/(√2))∫(1/(√(1−((√(sin(2x))))^2 ))).((cos(2x))/(√(sin(2x))))+(1/(√2))∫(1/(√(1+((√(sin(2x))))^2 ))).((cos(2x))/(√(sin(2x))))dx  =(1/(√2))sin^(−1) ((√(sin(2x))))+(1/(√2))sinh^(−1) ((√(sin(2x))))+c    i can solve it with using another ways  but i dont have a time now i will post  them in anothe time

$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\mathrm{2}{sin}\left({x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{sin}\left({x}\right)+{cos}\left({x}\right)+{sin}\left({x}\right)−{cos}\left({x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}.\frac{{cos}\left(\mathrm{2}{x}\right)}{{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}+\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}}.\frac{{cos}\left(\mathrm{2}{x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\sqrt{\mathrm{1}−{sin}\left(\mathrm{2}{x}\right)}}{\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}}.\frac{{cos}\left(\mathrm{2}{x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\left(\sqrt{{sin}\left(\mathrm{2}{x}\right)}\right)^{\mathrm{2}} }}.\frac{{cos}\left(\mathrm{2}{x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\left(\sqrt{{sin}\left(\mathrm{2}{x}\right)}\right)^{\mathrm{2}} }}.\frac{{cos}\left(\mathrm{2}{x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{sin}^{−\mathrm{1}} \left(\sqrt{{sin}\left(\mathrm{2}{x}\right)}\right)+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{sinh}^{−\mathrm{1}} \left(\sqrt{{sin}\left(\mathrm{2}{x}\right)}\right)+{c} \\ $$$$ \\ $$$${i}\:{can}\:{solve}\:{it}\:{with}\:{using}\:{another}\:{ways} \\ $$$${but}\:{i}\:{dont}\:{have}\:{a}\:{time}\:{now}\:{i}\:{will}\:{post} \\ $$$${them}\:{in}\:{anothe}\:{time} \\ $$

Commented by Shakhzod last updated on 12/May/20

Thank you. I will wait you then.

$${Thank}\:{you}.\:{I}\:{will}\:{wait}\:{you}\:{then}. \\ $$

Answered by  M±th+et+s last updated on 12/May/20

Answered by  M±th+et+s last updated on 12/May/20

Answered by  M±th+et+s last updated on 12/May/20

=(1/(√2))∫((2sin(x))/(√(sin(2x))))dx=(1/(√2))∫((cos(x)+sin(x)−cos(x)+sin(x))/(√(sin(2x))))dx  =(1/(√2))∫(((√(1+sin(2x)))−(√(1−sin(2x))))/(√(sin(2x)))).((csc(2x)cot(2x))/(csc(2x)cot(2x)))dx  =(1/(√2))∫((((√(csc(2x)+1))−(√(csc(2x)−1))))/(√(csc^2 (2x)−1)))cot(2x)dx  (1/(√2))∫((cot(2x))/(√(csc(2x)−1)))dx−(1/(√2))∫((cot(2x))/(√(csc(2x)+1)))dx  (1/(√2))∫(((csc(2x)cot(2x))/(√(csc(2x)−1)))/(((√(csc2x−1)))^2 +1))dx−(1/(√2))∫(((csc(2x)cot(2x))/(√(csc(2x)+1)))/(((√(csc(2x)+1)))^2 −1))  =−(1/(√2))tan^(−1) ((√(csc(2x)−1)))−(1/(√2))tanh^(−1) ((√(csc(2x)+1)))+c

$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\mathrm{2}{sin}\left({x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{cos}\left({x}\right)+{sin}\left({x}\right)−{cos}\left({x}\right)+{sin}\left({x}\right)}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\sqrt{\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}−{sin}\left(\mathrm{2}{x}\right)}}{\sqrt{{sin}\left(\mathrm{2}{x}\right)}}.\frac{{csc}\left(\mathrm{2}{x}\right){cot}\left(\mathrm{2}{x}\right)}{{csc}\left(\mathrm{2}{x}\right){cot}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\left(\sqrt{{csc}\left(\mathrm{2}{x}\right)+\mathrm{1}}−\sqrt{{csc}\left(\mathrm{2}{x}\right)−\mathrm{1}}\right)}{\sqrt{{csc}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\mathrm{1}}}{cot}\left(\mathrm{2}{x}\right){dx} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{cot}\left(\mathrm{2}{x}\right)}{\sqrt{{csc}\left(\mathrm{2}{x}\right)−\mathrm{1}}}{dx}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{{cot}\left(\mathrm{2}{x}\right)}{\sqrt{{csc}\left(\mathrm{2}{x}\right)+\mathrm{1}}}{dx} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\frac{{csc}\left(\mathrm{2}{x}\right){cot}\left(\mathrm{2}{x}\right)}{\sqrt{{csc}\left(\mathrm{2}{x}\right)−\mathrm{1}}}}{\left(\sqrt{{csc}\mathrm{2}{x}−\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{1}}{dx}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\int\frac{\frac{{csc}\left(\mathrm{2}{x}\right){cot}\left(\mathrm{2}{x}\right)}{\sqrt{{csc}\left(\mathrm{2}{x}\right)+\mathrm{1}}}}{\left(\sqrt{{csc}\left(\mathrm{2}{x}\right)+\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\sqrt{{csc}\left(\mathrm{2}{x}\right)−\mathrm{1}}\right)−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{tanh}^{−\mathrm{1}} \left(\sqrt{{csc}\left(\mathrm{2}{x}\right)+\mathrm{1}}\right)+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com