All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 93368 by Rio Michael last updated on 12/May/20
giventhatf(r)=sin(1+2r)θshowthatf(r)−f(r−1)=2cos2rθsinθhenceshowthat∑nr=1cos2rθsinθ=cos(n+1)θsinnθ
Answered by mr W last updated on 12/May/20
f(r)=sin(1+2r)θf(r−1)=sin(2r−1)θ=−sin(1−2r)θf(r)−f(r−1)=sin(1+2r)θ+sin(1−2r)θ=sinθcos2rθ+cosθsin2rθ+sinθcos2rθ−cosθsin2rθ=2cos2rθsinθ∑nr=1cos2rθsinθ=∑nr=112{f(r)−f(r−1)}=12{f(n)−f(0)}=12{sin(1+2n)θ−sinθ}=12{sinθcos2nθ+cosθsin2nθ−sinθ}=12{−sinθ2sin2nθ+2cosθsinnθcosnθ}={−sinθsinnθ+cosθcosnθ}sinnθ=cos(n+1)θsinnθ
Commented by Rio Michael last updated on 12/May/20
thankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com