Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 93368 by Rio Michael last updated on 12/May/20

given that f(r)=  sin (1 + 2r)θ  show that f(r)−f(r−1) = 2 cos 2r θ sin θ  hence show that      Σ_(r=1) ^n  cos 2r θ sin θ  = cos (n +1)θ sin nθ

giventhatf(r)=sin(1+2r)θshowthatf(r)f(r1)=2cos2rθsinθhenceshowthatnr=1cos2rθsinθ=cos(n+1)θsinnθ

Answered by mr W last updated on 12/May/20

f(r)=sin (1+2r)θ  f(r−1)=sin (2r−1)θ=−sin (1−2r)θ  f(r)−f(r−1)=sin (1+2r)θ+sin (1−2r)θ  =sin θ cos 2rθ+cos θ sin 2rθ+sin θ cos 2rθ−cos θ sin 2rθ  =2 cos 2rθ sin θ  Σ_(r=1) ^n cos 2rθ sin θ=Σ_(r=1) ^n (1/2){f(r)−f(r−1)}  =(1/2){f(n)−f(0)}  =(1/2){sin (1+2n)θ−sin θ}  =(1/2){sin θ cos 2nθ+cos θ sin 2nθ−sin θ}  =(1/2){−sin θ 2 sin^2  nθ+2 cos θ sin nθ cos nθ}  ={−sin θ sin nθ+cos θ cos nθ }sin nθ  =cos (n+1)θ sin nθ

f(r)=sin(1+2r)θf(r1)=sin(2r1)θ=sin(12r)θf(r)f(r1)=sin(1+2r)θ+sin(12r)θ=sinθcos2rθ+cosθsin2rθ+sinθcos2rθcosθsin2rθ=2cos2rθsinθnr=1cos2rθsinθ=nr=112{f(r)f(r1)}=12{f(n)f(0)}=12{sin(1+2n)θsinθ}=12{sinθcos2nθ+cosθsin2nθsinθ}=12{sinθ2sin2nθ+2cosθsinnθcosnθ}={sinθsinnθ+cosθcosnθ}sinnθ=cos(n+1)θsinnθ

Commented by Rio Michael last updated on 12/May/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com