Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 93415 by abdomathmax last updated on 13/May/20

let  A = (((1        −1)),((1            1)) )  1) calculate A^(−1)  and A^(−2)   2) calculate A^n   3) find e^A  and e^(−A)

letA=(1111)1)calculateA1andA22)calculateAn3)findeAandeA

Commented by prakash jain last updated on 13/May/20

det(A−λI)= determinant (((1−λ),(−1)),(1,(1−λ)))  =(1−λ)^2 +1=0  λ=1−i,1+i  (i=(√(−1)))  Eigenvector for λ=1−i  (A−λI) [(x_1 ),(x_2 ) ]=0  ( [(1,(−1)),(1,1) ]− [((1−i),0),(0,(1−i)) ]) [(x_1 ),(x_2 ) ]=0   [(i,(−1)),(1,i) ] [(x_1 ),(x_2 ) ]=0  ix_1 −x_2 =0  x_1 +ix_2 =0  x_1 =1,x_2 =i  ( [(1,(−1)),(1,1) ]− [((1+i),0),(0,(1+i)) ]) [(y_1 ),(y_2 ) ]=0   [((−i),(−1)),(1,(−i)) ] [(y_1 ),(y_2 ) ]=0  −iy_1 −y_2 =0  y_1 −iy_2 =0  y_1 =1, y_2 =−i  S= [(1,1),((−i),i) ]  S^(−1) = [((1/2),(i/2)),((1/2),(−i/2)) ]  S^(−1) AS= [((1+i),0),(0,(1−i)) ]  A=S [((1+i),0),(0,(1−i)) ]S^(−1)   A^n =S [(((1+i)^n ),0),(0,((1−i)^n )) ]S^(−1)   A^n = [(1,1),((−i),i) ] [(((1−i)^n ),0),(0,((1+i)^n )) ] [((1/2),(i/2)),((1/2),(−i/2)) ]  =(1/2) [(((1−i)^n +(1+i)^n ),(−i((1−i)^n −(1+i))^n  )),((i((1−i)^n −(1+i)^n )),((1−i)^n +(1+i)^n )) ]

det(AλI)=|1λ111λ|=(1λ)2+1=0λ=1i,1+i(i=1)Eigenvectorforλ=1i(AλI)[x1x2]=0([1111][1i001i])[x1x2]=0[i11i][x1x2]=0ix1x2=0x1+ix2=0x1=1,x2=i([1111][1+i001+i])[y1y2]=0[i11i][y1y2]=0iy1y2=0y1iy2=0y1=1,y2=iS=[11ii]S1=[1/2i/21/2i/2]S1AS=[1+i001i]A=S[1+i001i]S1An=S[(1+i)n00(1i)n]S1An=[11ii][(1i)n00(1+i)n][1/2i/21/2i/2]=12[(1i)n+(1+i)ni((1i)n(1+i))ni((1i)n(1+i)n)(1i)n+(1+i)n]

Commented by mathmax by abdo last updated on 13/May/20

thank you sir.

thankyousir.

Commented by mathmax by abdo last updated on 13/May/20

1) p_c (x) =det(A−xI) = determinant (((1−x      −1)),((1            1−x)))=(1−x)^2 +1  =x^2 −2x+2   csyley hamilton theorem ⇒A^2 −2A +2I =0 ⇒  A(A−2I) =−2I ⇒A×(−(1/2))(A−2I) =I ⇒ A is inversible   and A^(−1)  =−(1/2)A +I = (((−(1/2)       (1/2))),((−(1/2)        −(1/2))) )+ (((1        0)),((0         1)) )  A^(−1)  = ((((1/2)           (1/2))),((−(1/2)         (1/2))) )    and A^(−2)  =(A^(−1) )^2

1)pc(x)=det(AxI)=|1x111x|=(1x)2+1=x22x+2csyleyhamiltontheoremA22A+2I=0A(A2I)=2IA×(12)(A2I)=IAisinversibleandA1=12A+I=(12121212)+(1001)A1=(12121212)andA2=(A1)2

Commented by mathmax by abdo last updated on 13/May/20

2) we have P_c (x) =det(A−xI) =x^2 −2x +2  P_c (x)=0 ⇔(x−1)^2 +1 =0 ⇔(x−1)^2  =−1 ⇒x =1+i  or x=1−i  let divide x^n  by P_c (x) ⇒x^n  =Q(x)P_c (x) +u_n x +v_n   ⇒(1+i)^n  =u_n (1+i)+v_n     ⇒(1+i−1+i)u_n =(1+i)^n −(1−i)^n   (1−i)^n  =u_n (1−i) +v_n   ⇒u_n =(1/(2i)){(1+i)^n −(1−i)^n } =(1/(2i)){  ((√2))^n  e^((inπ)/4) −((√2))^n  e^(−i((nπ)/4)) }  =((√2))^n  sin(((nπ)/4))  (1+i)^n  +(1−i)^n  =2u_n +2v_n  ⇒u_n +v_n =(1/2){ (1+i)^n  +(1−i)^n }  =((√2))^(n ) cos(((nπ)/4)) ⇒v_n =((√2))^n  cos(((nπ)/4))−((√2))^n  sin(((nπ)/4))  we have Pc(A)=0  ⇒A^n  =u_(n )  A +v_n  I  =((√2))^n  sin(((nπ)/4)) (((1           −1)),((1                 1)) )  +((√2))^n (cos(((nπ)/4))−sin(((nπ)/4)) (((1      0)),((0       1)) )  A^n  = (((((√2))^n  cos(((nπ)/4))                                                                        −((√2))^(n ) sin(((nπ)/4)))),((((√2))^n  sin(((nπ)/4))                                                                                 ((√2))^n  cos(((nπ)/4)           )) )

2)wehavePc(x)=det(AxI)=x22x+2Pc(x)=0(x1)2+1=0(x1)2=1x=1+iorx=1iletdividexnbyPc(x)xn=Q(x)Pc(x)+unx+vn(1+i)n=un(1+i)+vn(1+i1+i)un=(1+i)n(1i)n(1i)n=un(1i)+vnun=12i{(1+i)n(1i)n}=12i{(2)neinπ4(2)neinπ4}=(2)nsin(nπ4)(1+i)n+(1i)n=2un+2vnun+vn=12{(1+i)n+(1i)n}=(2)ncos(nπ4)vn=(2)ncos(nπ4)(2)nsin(nπ4)wehavePc(A)=0An=unA+vnI=(2)nsin(nπ4)(1111)+(2)n(cos(nπ4)sin(nπ4)(1001)An=((2)ncos(nπ4)(2)nsin(nπ4)(2)nsin(nπ4)(2)ncos(nπ4)

Commented by mathmax by abdo last updated on 13/May/20

⇒ A^n  = (((((√2))^n  cos(((nπ)/4))            −((√2))^n  sin(((nπ)/4)))),((((√2))^n  sin(((nπ)/4))                  ((√2))^n  cos(((nπ)/4)))) )

An=((2)ncos(nπ4)(2)nsin(nπ4)(2)nsin(nπ4)(2)ncos(nπ4))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com