All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 93484 by mashallah last updated on 13/May/20
∫t2/(1+t2)2dx=
Commented by prakash jain last updated on 13/May/20
functionisintsoconstantwrtxt2(1+t2)2x+C
Commented by mathmax by abdo last updated on 13/May/20
I=∫t2(1+t2)2dt⇒I=∫t2+1−1(1+t2)dt=∫dt1+t2−∫dt(1+t2)2wehave∫dt1+t2=arctan(t)+c1∫dt(1+t2)2=t=tanx∫(1+tan2x)dx(1+tan2x)2=∫cos2xdx=12∫(1+cos(2x))dx=x2+14sin(2x)+c2sin(2x)=2tanx1+tan2x=2t1+t2⇒∫dt(1+t2)2=12arctan(t)+t2(1+t2)+c2⇒I=12arctan(t)−t2(1+t2)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com