Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93587 by  M±th+et+s last updated on 13/May/20

∫((x+1)/(x^2 −((1+(√5))/2)x+1))dx

x+1x21+52x+1dx

Answered by niroj last updated on 13/May/20

    I= ∫ ((  x+1)/(x^2 −((1+(√5))/2)x+1))dx   = ∫ (((1/2)(2x−((1+(√5))/2))+ ((5+(√5))/4))/(x^2 −((1+(√5))/2)x+1))dx   = (1/2)∫ (( 2x−((1+(√5))/2))/(x^2 −((1+(√5))/2)x+1))dx+ ((5+(√5))/4)∫ ((  dx)/(x^2 − ((1+(√5))/2)+1))   = (1/2)log (x^2 −((1+(√5))/2)+1) + ((5+(√5))/4) ∫ ((  1)/((x)^2 −2.x.((1+(√5))/4)+( ((1+(√5))/4))^2 −(((1+(√5))/4))^2 +1))dx +C  = (1/2)log (x^2 −((1+(√5))/2)+1)+ ((5+(√5))/4)∫((   1)/((x−((1+(√5))/4))^2 −{(((1+(√5) )^2 −16)/(16))}))   =  (1/2)log (x^2 −((1+(√5))/2)+1)+ ((5+(√5))/4)∫ (( 1)/((x−((1+(√5))/4))^2 −((√(( (√5) −5)/8)) )^2 ))dx  = (1/2)log (x^2 −((1+(√5))/2)+1)+((5+(√5))/4).(1/(2.(√(( (√5)−5)/8))))log ((x−((1+(√5))/4) −(√((  (√5)−5)/8)))/(x−((1+(√5))/4)+ (√(( (√5) −5)/8)))) +C   = (1/2)log (x^2 − ((1+(√5))/2)+1)+((5+(√5))/4).(1/(2((√((√5) −5))/(2(√2)))))log ((((4x−1−(√5))/4) − ((√((√5)  −5))/(2(√2))))/(((4x−1−(√5))/4) +((√((√5) −5))/(2(√2))))) +C   = (1/2)log (x^2 −((1+(√5))/2)+1)+(((5+(√5) )(√2))/(4(√((√5)  −5))))log (((4x−1−(√5) )(√2) −2(√((√5) −5)))/((4x−1−(√5) )(√2)  +2(√((√5)  −5)))) +C //.

I=x+1x21+52x+1dx=12(2x1+52)+5+54x21+52x+1dx=122x1+52x21+52x+1dx+5+54dxx21+52+1=12log(x21+52+1)+5+541(x)22.x.1+54+(1+54)2(1+54)2+1dx+C=12log(x21+52+1)+5+541(x1+54)2{(1+5)21616}=12log(x21+52+1)+5+541(x1+54)2(558)2dx=12log(x21+52+1)+5+54.12.558logx1+54558x1+54+558+C=12log(x21+52+1)+5+54.125522log4x15455224x154+5522+C=12log(x21+52+1)+(5+5)2455log(4x15)2255(4x15)2+255+C//.

Commented by  M±th+et+s last updated on 13/May/20

great work thanx<

greatworkthanx<

Commented by niroj last updated on 14/May/20

����

Answered by Ar Brandon last updated on 14/May/20

K=∫((x+1)/(x^2 −((1+(√5))/2)x+1))dx=(1/2)∫((2x−((1+(√5))/2))/(x^2 −((1+(√5))/2)x+1))dx+∫((1+((1+(√5))/4))/(x^2 −((1+(√5))/2)x+1))dx  ⇒K=(1/2)ln(x^2 −2xcos36°+1)+∫((1+cos36^° )/((x−cos36^° )^2 +sin^2 36^° ))dx  ⇒K=(1/2)ln(x^2 −2xcos36°+1)+((1+cos36^° )/(sin^2 36^° ))∫(1/([((x−cos36^° )/(sin36^° ))]^2 +1))dx  ⇒K=(1/2)ln(x^2 −2xcos36°+1)+((1+cos36^° )/(sin36^° ))arctan[((x−cos36^° )/(sin36^° ))]+C

K=x+1x21+52x+1dx=122x1+52x21+52x+1dx+1+1+54x21+52x+1dxK=12ln(x22xcos36°+1)+1+cos36°(xcos36°)2+sin236°dxK=12ln(x22xcos36°+1)+1+cos36°sin236°1[xcos36°sin36°]2+1dxK=12ln(x22xcos36°+1)+1+cos36°sin36°arctan[xcos36°sin36°]+C

Commented by  M±th+et+s last updated on 14/May/20

thank you sir

thankyousir

Commented by Ar Brandon last updated on 14/May/20

You're welcome ��

Answered by 1549442205 last updated on 14/May/20

F(x)=(1/2)∫(((2x−((1+(√5))/2))+2+((1+(√5))/2)  )/(x^2 −((1+(√5))/2)x+1))dx  =0.5∫(du/u)+(1+((1+(√5))/(4 )))∫(dx/(x^2 −((1+(√5))/(2 ))x+1))  =0.5ln∣x^2 −((1+(√5))/2)+1∣+((5+(√5))/4)∫((d(x−((1+(√5))/4)))/((x−((1+(√5))/4))^2 +((10−2(√5))/(16))))  =0.5ln∣x^2 −((1+(√5))/2)x+1∣+((5+(√5))/4)×(4/(√(10−2(√5))))tan^(−1) (((x−((1+(√5))/4))/((√(10−2(√5)))/4)))  =0.5ln∣x^2 −((1+(√5))/2)x+1∣+((5+(√5))/(√(10−2(√5))))tan^(−1) (((4x−1−(√5))/(√(10−2(√5)))))+C  =

F(x)=12(2x1+52)+2+1+52x21+52x+1dx=0.5duu+(1+1+54)dxx21+52x+1=0.5lnx21+52+1+5+54d(x1+54)(x1+54)2+102516=0.5lnx21+52x+1+5+54×41025tan1(x1+5410254)=0.5lnx21+52x+1+5+51025tan1(4x151025)+C=

Commented by  M±th+et+s last updated on 14/May/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com