Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93632 by abdomathmax last updated on 14/May/20

calculate ∫_(−∞) ^(+∞)  ((x^2 −3)/((x^2 −x+1)^2 ))dx

calculate+x23(x2x+1)2dx

Commented by abdomathmax last updated on 15/May/20

let I  =∫_(−∞) ^(+∞)  ((x^2 −3)/((x^2 −x+1)^2 ))dx ⇒I =∫_(−∞) ^(+∞)  ((x^2 −3)/(((x−(1/2))^2  +(3/4))^2 ))dx  =_(x−(1/2)=((√3)/2)t)  ((16)/9) ∫_(−∞) ^(+∞)   ((((1/2)+((√3)/2)t)^2 −3)/((t^2  +1)^2 ))×((√3)/2)dt  =((8(√3))/9) ∫_(−∞) ^(+∞)  (((1+(√3)t)^2 −12)/(4(t^2  +1)^2 ))dt  =((2(√3))/9) ∫_(−∞) ^(+∞)  ((1+2(√3)t +3t^2 −12)/((t^2  +1)^2 ))dt  let ϕ(z) =((3z^2 +2(√3)z −11)/((z^2  +1)^2 ))  poles of ϕ?  ϕ(z) =((3z^2  +2(√3)z−11)/((z−i)^2 (z+i)^2 ))  so the poles are +^− i(doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!))  {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    (((3z^2  +2(√3)z−11)/((z+i)^2 )))^((1))   =lim_(z→i)   (((6z+2(√3))(z+i)^2 −2(z+i)(3z^2 +2(√3)z−11))/((z+i)^4 ))  =lim_(z→i)     (((6z+2(√3))(z+i)−2(3z^2  +2(√3)z −11))/((z+i)^3 ))  =(((6i+2(√3))(2i)−2(−3+2(√3)i−11))/((2i)^3 ))  =((−12 +4(√3)i +6−4(√3)i +22)/(−8i)) =((22−6)/(−8i)) =((16)/(−8i)) =((−2)/i)  =2i ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ(2i) =−4π ⇒  I =((2(√3))/9)(−4π) =((−8π(√3))/9)  ★ I =((−8π(√3))/9)★

letI=+x23(x2x+1)2dxI=+x23((x12)2+34)2dx=x12=32t169+(12+32t)23(t2+1)2×32dt=839+(1+3t)2124(t2+1)2dt=239+1+23t+3t212(t2+1)2dtletφ(z)=3z2+23z11(z2+1)2polesofφ?φ(z)=3z2+23z11(zi)2(z+i)2sothepolesare+i(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi(3z2+23z11(z+i)2)(1)=limzi(6z+23)(z+i)22(z+i)(3z2+23z11)(z+i)4=limzi(6z+23)(z+i)2(3z2+23z11)(z+i)3=(6i+23)(2i)2(3+23i11)(2i)3=12+43i+643i+228i=2268i=168i=2i=2i+φ(z)dz=2iπ(2i)=4πI=239(4π)=8π39I=8π39

Answered by Ar Brandon last updated on 14/May/20

((x^2 −3)/((x^2 −x+1)))≡((ax+b)/(x^2 −x+1))+((cx+d)/((x^2 −x+1)))                        =(1/(x^2 −x+1))+((x−4)/((x^2 −x+1)^2 ))                        ⇒K=∫_(−∞) ^(+∞) ((x^2 −3)/((x^2 −x+1)^2 ))dx=∫_(−∞) ^(+∞) (1/(x^2 −x+1))dx+∫_(−∞) ^(+∞) ((x−4)/((x^2 −x+1)^2 ))dx  ⇒K=∫_(−∞) ^(+∞) (1/((x−(1/2))^2 +(3/4)))dx+(1/2)∫_(−∞) ^(+∞) ((2x−1)/((x^2 −x+1)^2 ))dx−(7/2)∫_(−∞) ^(+∞) (1/((x^2 −x+1)^2 ))dx  ⇒K=((2(√3))/3)arctan[((2(√3))/3)(x−(1/2))]−(1/(2(x^2 −x+1)))−(7/2)∫_(−∞) ^(+∞) (1/((x^2 −x+1)^2 ))dx  J=∫_(−∞) ^(+∞) (1/((x^2 −x+1)^2 ))dx=(1/2)∫_(−∞) ^(+∞) (((x^2 +1)−(x^2 −1))/((x^2 −x+1)^2 ))dx  2J=∫_(−∞) ^(+∞) ((x^2 +1)/((x^2 −x+1)^2 ))dx−∫_(−∞) ^(+∞) ((x^2 −1)/((x^2 −x+1)^2 ))dx  ⇒2J=∫_(−∞) ^(+∞) ((x^2 +1)/((x^2 −x+1)^2 ))dx−∫_(−∞) ^(+∞) ((1−(1/x^2 ))/((x−1+(1/x))^2 ))dx  ⇒2J=∫_(−∞) ^(+∞) ((x^2 +1)/((x^2 −x+1)^2 ))dx+(x/(x^2 −x+1))

x23(x2x+1)ax+bx2x+1+cx+d(x2x+1)=1x2x+1+x4(x2x+1)2K=+x23(x2x+1)2dx=+1x2x+1dx++x4(x2x+1)2dxK=+1(x12)2+34dx+12+2x1(x2x+1)2dx72+1(x2x+1)2dxK=233arctan[233(x12)]12(x2x+1)72+1(x2x+1)2dxJ=+1(x2x+1)2dx=12+(x2+1)(x21)(x2x+1)2dx2J=+x2+1(x2x+1)2dx+x21(x2x+1)2dx2J=+x2+1(x2x+1)2dx+11x2(x1+1x)2dx2J=+x2+1(x2x+1)2dx+xx2x+1

Answered by Ar Brandon last updated on 14/May/20

((x^2 −3)/((x^2 −x+1)^2 ))≡((ax+b)/(x^2 −x+1))+((cx+d)/((x^2 −x+1)^2 ))                          =(1/(x^2 −x+1))+((x−4)/((x^2 −x+1)^2 ))  ⇒K=∫_(−∞) ^(+∞)  ((x^2 −3)/((x^2 −x+1)^2 ))dx=∫_(−∞) ^(+∞) (1/(x^2 −x+1))dx+∫_(−∞) ^(+∞) ((x−4)/((x^2 −x+1)^2 ))dx  ⇒K=∫_(−∞) ^(+∞) (1/((x−(1/2))^2 +(3/4)))dx+L  ⇒K=((2(√3))/3)[arctan ((2(√3))/3)(x−(1/2))]_(−∞) ^(+∞) +L  ⇒K=((2(√3))/3)π+L  L_n =∫_(−∞) ^(+∞) ((Ax+B)/((x^2 +px+q)^n ))dx=(A/2)∫_(−∞) ^(+∞) ((2x+p)/((x^2 +px+q)^n ))dx+(B−((Ap)/2))∫_(−∞) ^(+∞) (1/((x^2 +px+q)^n ))dx  ⇒L_n =−[(A/(2(n−1)(x^2 +px+q)^(n−1) ))]_(−∞) ^(+∞) +(B−((Ap)/2))∫_(−∞) ^(+∞) (1/([(x+(p/2))^2 +((√(q−(p^2 /4))))^2 ]^n ))dx  A=1, B=−4, p=−1, q=1, n=2  ⇒L=−(7/2)∫_(−∞) ^(+∞) (1/([(x−(1/2))^2 +(((√3)/2))^2 ]^2 ))dx  J_n =∫_(−∞) ^(+∞) (1/((x^2 +u^2 )^n ))dx  ⇒J_(n−1) =∫_(−∞) ^(+∞) (1/((x^2 +u^2 )^(n−1) ))dx=∫_(−∞) ^(+∞) ((x^2 +u^2 )/((x^2 +u^2 )^n ))dx  ⇒J_(n−1) =(1/2)∫_(−∞) ^(+∞) x∙((2x)/((x^2 +u^2 )^n ))dx+u^2 J_n   ⇒2J_(n−1) =[x∫((2x)/((x^2 +u^2 )^n ))dx]_(−∞) ^(+∞) −∫_(−∞) ^(+∞) ∫((2x)/(x^2 +u^2 ))dxdx+2u^2 J_n   ⇒2J_(n−1) =−[(x/((n−1)(x^2 +u^2 )^(n−1) ))]_(−∞) ^(+∞) +(1/(n−1))∫_(−∞) ^(+∞) (1/((x^2 +u^2 )^(n−1) ))dx+2u^2 J_n   ⇒2J_(n−1) =(1/(n−1))J_(n−1) +2u^2 J_n   ⇒J_n =((2n−3)/(2u^2 (n−1)))J_(n−1)   u=((√3)/2), n=2  ⇒−(2/7)L=(2/3)J_1   J_1 =∫_(−∞) ^(+∞) (1/((x−(1/2))^2 +(((√3)/2))^2 ))dx  J_1 =((2(√3))/3)[arctan((2(√3))/3)(x−(1/2))]_(−∞) ^(+∞) =((2(√3))/3)π  ⇒L=−((14(√3))/9)π  ⇒K=((2(√3))/3)π−((14(√3))/9)π  ∫_(−∞) ^(+∞)  ((x^2 −3)/((x^2 −x+1)^2 ))dx=−((8(√3))/9)π

x23(x2x+1)2ax+bx2x+1+cx+d(x2x+1)2=1x2x+1+x4(x2x+1)2K=+x23(x2x+1)2dx=+1x2x+1dx++x4(x2x+1)2dxK=+1(x12)2+34dx+LK=233[arctan233(x12)]++LK=233π+LLn=+Ax+B(x2+px+q)ndx=A2+2x+p(x2+px+q)ndx+(BAp2)+1(x2+px+q)ndxLn=[A2(n1)(x2+px+q)n1]++(BAp2)+1[(x+p2)2+(qp24)2]ndxA=1,B=4,p=1,q=1,n=2L=72+1[(x12)2+(32)2]2dxJn=+1(x2+u2)ndxJn1=+1(x2+u2)n1dx=+x2+u2(x2+u2)ndxJn1=12+x2x(x2+u2)ndx+u2Jn2Jn1=[x2x(x2+u2)ndx]++2xx2+u2dxdx+2u2Jn2Jn1=[x(n1)(x2+u2)n1]++1n1+1(x2+u2)n1dx+2u2Jn2Jn1=1n1Jn1+2u2JnJn=2n32u2(n1)Jn1u=32,n=227L=23J1J1=+1(x12)2+(32)2dxJ1=233[arctan233(x12)]+=233πL=1439πK=233π1439π+x23(x2x+1)2dx=839π

Commented by mathmax by abdo last updated on 14/May/20

thank you sir for this hardwork.

thankyousirforthishardwork.

Commented by Ar Brandon last updated on 15/May/20

����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com