Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93633 by abdomathmax last updated on 14/May/20

calvulate ∫_0 ^∞   ((cos(πx))/(1+x^4 ))dx

calvulate0cos(πx)1+x4dx

Commented by mathmax by abdo last updated on 15/May/20

A =∫_0 ^∞  ((cos(πx))/(x^4  +1))dx ⇒2A =∫_(−∞) ^(+∞)  ((cos(πx))/(x^4 +1))dx =Re(∫_(−∞) ^(+∞)  (e^(iπx) /(x^4  +1))dx)  let ϕ(z) =(e^(iπz) /(z^4  +1))    poles of ϕ?  ϕ(z) =(e^(iπz) /((z^2 −i)(z^2  +i))) =(e^(iπz) /((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i)))))  =(e^(iπz) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =(e^(iπ(e^((iπ)/4) )) /(2e^((iπ)/4) (2i))) =(1/(4i))e^(−((iπ)/4))  ×e^(iπ((1/(√2))+(i/(√2))))   =(1/(4i))e^(−((iπ)/4))  ×e^(−(π/(√2))) ×e^((iπ)/(√2))  =(e^(−(π/(√2))) /(4i)) e^(i((π/(√2))−(π/4)))   Res(ϕ,−e^(−i(π/4)) ) = (e^(iπ (−e^(−((iπ)/4)) )) /(−2e^(−((iπ)/4)) (−2i))) =(1/(4i))e^((iπ)/4)  e^(−iπ((1/(√2))−(i/(√2))))   =(1/(4i)) e^((iπ)/4)  ×e^(π/(√2))  e^(−((iπ)/(√2)))   =(e^(π/(√2)) /(4i))  ×e^(i((π/4)−(π/(√2))))  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =(π/2){  e^(−(π/2))  ×e^(i((π/(√2))−(π/4)))  +e^(π/2)  × e^(i((π/4)−(π/(√2)))) }  =((πe^(−(π/2)) )/2)( cos((π/(√2))−(π/4))+isin((π/(√2))−(π/4)))+((πe^(π/2) )/2)(cos((π/4)−(π/(√2)))+isin((π/4)−(π/(√2))))  =((π/2)e^(−(π/2))    +(π/2)e^(π/2) )cos((π/(√2))−(π/4)) +i(.....) ⇒  2A =π ch((π/2))cos((π/(√2))−(π/4)) ⇒ A =(π/2)ch((π/2))cos((π/(√2))−(π/4))

A=0cos(πx)x4+1dx2A=+cos(πx)x4+1dx=Re(+eiπxx4+1dx)letφ(z)=eiπzz4+1polesofφ?φ(z)=eiπz(z2i)(z2+i)=eiπz(zi)(z+i)(zi)(z+i)=eiπz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=eiπ(eiπ4)2eiπ4(2i)=14ieiπ4×eiπ(12+i2)=14ieiπ4×eπ2×eiπ2=eπ24iei(π2π4)Res(φ,eiπ4)=eiπ(eiπ4)2eiπ4(2i)=14ieiπ4eiπ(12i2)=14ieiπ4×eπ2eiπ2=eπ24i×ei(π4π2)+φ(z)dz=π2{eπ2×ei(π2π4)+eπ2×ei(π4π2)}=πeπ22(cos(π2π4)+isin(π2π4))+πeπ22(cos(π4π2)+isin(π4π2))=(π2eπ2+π2eπ2)cos(π2π4)+i(.....)2A=πch(π2)cos(π2π4)A=π2ch(π2)cos(π2π4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com