All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 93633 by abdomathmax last updated on 14/May/20
calvulate∫0∞cos(πx)1+x4dx
Commented by mathmax by abdo last updated on 15/May/20
A=∫0∞cos(πx)x4+1dx⇒2A=∫−∞+∞cos(πx)x4+1dx=Re(∫−∞+∞eiπxx4+1dx)letφ(z)=eiπzz4+1polesofφ?φ(z)=eiπz(z2−i)(z2+i)=eiπz(z−i)(z+i)(z−−i)(z+−i)=eiπz(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=eiπ(eiπ4)2eiπ4(2i)=14ie−iπ4×eiπ(12+i2)=14ie−iπ4×e−π2×eiπ2=e−π24iei(π2−π4)Res(φ,−e−iπ4)=eiπ(−e−iπ4)−2e−iπ4(−2i)=14ieiπ4e−iπ(12−i2)=14ieiπ4×eπ2e−iπ2=eπ24i×ei(π4−π2)⇒∫−∞+∞φ(z)dz=π2{e−π2×ei(π2−π4)+eπ2×ei(π4−π2)}=πe−π22(cos(π2−π4)+isin(π2−π4))+πeπ22(cos(π4−π2)+isin(π4−π2))=(π2e−π2+π2eπ2)cos(π2−π4)+i(.....)⇒2A=πch(π2)cos(π2−π4)⇒A=π2ch(π2)cos(π2−π4)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com