Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93638 by i jagooll last updated on 14/May/20

∫ ((x^4 +4x^2 )/(√(x^2 +4))) dx ?

x4+4x2x2+4dx?

Commented by i jagooll last updated on 14/May/20

thank you both

thankyouboth

Commented by mathmax by abdo last updated on 14/May/20

I =∫  ((x^4  +4x^2 )/(√(x^2  +4)))dx  changement (√(x^2  +4))=t give x^2  =t^2 −4 ⇒xdx =tdt  I =∫  (((t^2 −4)^3  +4(√(t^2 −4)))/t)tdt =∫( (t^2 −4)^3  +4(√(t^2 −4)))dt  =∫ (t^2 −4)^3  dt +4 ∫(√(t^2 −4))dt  but  ∫ (t^2 −4)^3  dt =∫  (t^6 −3t^4 (4)+3t^2 (4)^2 −4^3 )dt  =(t^7 /7) −((12)/5)t^5  +((48)/3) t^3  −64 t +c_1   ∫ (√(t^2 −4))dt  =_(t =2chz)   ∫ 2 shz (2shz)dz =4 ∫ sh^2 z dz  =2∫ (ch(2z)−1)dz =sh(2z)−2z +c_2   =2sh(z)ch(z) −2z +c_2   =2(√(ch^2 z−1))×(t/2) −2argch((t/2)) +c_2   =t(√((t^2 /4)−1)) −2 ln((t/2)+(√((t^2 /4)−1))) +c_2 ⇒  I =(1/7)((√(x^2 +4)))^7 −((12)/5)((√(x^2 +4)))^5  +16((√(x^2  +4)))^3 −64(√(x^2  +4))  +2t(√(t^2 −4))  −2ln(t+(√(t^2 −4))) +C

I=x4+4x2x2+4dxchangementx2+4=tgivex2=t24xdx=tdtI=(t24)3+4t24ttdt=((t24)3+4t24)dt=(t24)3dt+4t24dtbut(t24)3dt=(t63t4(4)+3t2(4)243)dt=t77125t5+483t364t+c1t24dt=t=2chz2shz(2shz)dz=4sh2zdz=2(ch(2z)1)dz=sh(2z)2z+c2=2sh(z)ch(z)2z+c2=2ch2z1×t22argch(t2)+c2=tt2412ln(t2+t241)+c2I=17(x2+4)7125(x2+4)5+16(x2+4)364x2+4+2tt242ln(t+t24)+C

Answered by Ar Brandon last updated on 14/May/20

L=∫ ((x^4 +4x^2 )/(√(x^2 +4))) dx=∫x^2 ∙((x^2 +4)/(√(x^2 +4)))dx=∫x^2 (√(x^2 +4))dx   x=2sinhθ⇒dx=2coshθdθ  L=∫4sinh^2 θ∙(√(4sinh^2 θ+4))∙2coshθdθ  ⇒L=4∫4sinh^2 θcosh^2 θdθ=4∫sinh^2 2θdθ  ⇒L=2∫(cosh4θ−1)=((sinh4θ)/2)−2θ+C  ∫ ((x^4 +4x^2 )/(√(x^2 +4))) dx =(1/2)sinh4sinh^(−1) ((x/2))−2sinh^(−1) ((x/2))+C

L=x4+4x2x2+4dx=x2x2+4x2+4dx=x2x2+4dxx=2sinhθdx=2coshθdθL=4sinh2θ4sinh2θ+42coshθdθL=44sinh2θcosh2θdθ=4sinh22θdθL=2(cosh4θ1)=sinh4θ22θ+Cx4+4x2x2+4dx=12sinh4sinh1(x2)2sinh1(x2)+C

Answered by Kunal12588 last updated on 14/May/20

I=∫((x^2 (x^2 +4))/(√(x^2 +4)))dx  x^2 +4=t  ⇒dx=(1/(2(√(t−4))))dt  I=(1/2)∫(((t−4)t)/((√t)(√(t−4))))dt=(1/2)∫(√t)(√(t−4)) dt=(1/2)∫(√(t^2 −4t)) dt  =(1/2)∫(√((t−2)^2 −4)) dt  =(1/2)[(1/2)(t−2)(√(t^2 −4t))−(4/2)ln∣t−2+(√(t^2 −4t))∣]+C  =(1/2)[(1/2)x(x^2 +2)(√(x^2 +4))−2ln∣x^2 +2+x(√(x^2 +4))∣]+C  =(1/4)x(x^2 +2)(√(x^2 +4))−ln∣x^2 +x(√(x^2 +4))+2∣+C

I=x2(x2+4)x2+4dxx2+4=tdx=12t4dtI=12(t4)ttt4dt=12tt4dt=12t24tdt=12(t2)24dt=12[12(t2)t24t42lnt2+t24t]+C=12[12x(x2+2)x2+42lnx2+2+xx2+4]+C=14x(x2+2)x2+4lnx2+xx2+4+2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com