Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 93695 by i jagooll last updated on 14/May/20

Commented by mathmax by abdo last updated on 14/May/20

f(x) =((6x−^3 (√(27x^3 +2x−1)))/((^3 (√(8x^3 −x)) +x))) ⇒f(x) =((6x−3x(1+(2/(27x^2 ))−(1/(27x^3 )))^(1/3) )/(2x(1−(1/(8x^2 )))^(1/3)  +x))  ⇒f(x) ∼((6x−3x(1+(1/3)((2/(27x^2 ))−(1/(27x^3 )))))/(2x(1−(1/(24x^2 )))+x)) ∼((3x)/(3x)) =1 ⇒lim_(x→−∞) f(x)=1

f(x)=6x327x3+2x1(38x3x+x)f(x)=6x3x(1+227x2127x3)132x(118x2)13+xf(x)6x3x(1+13(227x2127x3))2x(1124x2)+x3x3x=1limxf(x)=1

Answered by 1549442205 last updated on 14/May/20

lim_(x→−∞) ((6x−((27x^3 +2x−1))^(1/3) )/(((8x^3 −x))^(1/3) +x))=lim_(x→−∞) ((6−((27+(2/x^2 )−(1/x^3 )))^(1/3) )/(((8−(1/x^2 )))^(1/3) +1))  =((6−((27))^(1/3) )/(((8   ))^(1/3) +1))=((6−3)/(2+1))=1

limx6x27x3+2x138x3x3+x=limx627+2x21x3381x23+1=627383+1=632+1=1

Commented by john santu last updated on 14/May/20

lim_(x→∞)  ≠ lim_(x→−∞)  sir

limxlimxsir

Commented by john santu last updated on 14/May/20

your answer is wrong

youransweriswrong

Commented by 1549442205 last updated on 14/May/20

excuse me,I wrote fault

excuseme,Iwrotefault

Answered by john santu last updated on 14/May/20

lim_(x→−∞)  (((6x−x ((27+(2/x^2 )−(1/x^3 )))^(1/(3  )) )/(x ((8−(1/x^2 )))^(1/(3  )) +x))) =  lim_(x→−∞)  (((−6+3)/(−2−1))) = ((−3)/(−3)) = 1

limx(6xx27+2x21x33x81x23+x)=limx(6+321)=33=1

Commented by i jagooll last updated on 14/May/20

cooll man ������

Commented by Ar Brandon last updated on 14/May/20

My man��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com