All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 93720 by john santu last updated on 14/May/20
∫dx(x+1)3x2+2x
Commented by john santu last updated on 14/May/20
x2+2x=t2⇒(2x+2)dx=2tdtdx=tdtx+1;(x+1)2=t2+1⇒1(x+1)2=1t2+1∫dx(x+1)3x2+2x=∫tdt(t2+1)2.t=∫dt(t2+1)2lett=tanu=∫sec2udusec4u=∫cos2udu=∫12+12cos2udu=12u+12sinucosu+c=12tan−1(t)+t2(t2+1)+c=12tan−1(x2+2x)+x2+2x2(x+1)2+c
Commented by mathmax by abdo last updated on 14/May/20
I=∫dx(x+1)3x2+2xwedothechangementx2+2x=t⇒x2+2x=t2⇒(2x+2)dx=2tdt⇒(x+1)dx=tdt⇒dx=tdt(x+1)x2+2x+1=t2+1⇒(x+1)2=(t2+1)⇒dx(x+1)3=tdt(t2+1)dx(x+1)3=dx(x+1)×1(x+1)2=tdt(x+1)2(x+1)2=tdt(t2+1)2⇒I=∫tdtt(t2+1)2dt=∫dt(t2+1)2=t=tanθ∫(1+tan2θ)dθ(1+tan2θ)2=∫dθ1+tan2θ=∫cos2θdθ=12∫(1+cos(2θ)dθ=12θ+14sin(2θ)+c=arctant2+14×2t1+t2+C=arctant2+t2(1+t2)+CI=12arctan(x2+2x)+x2+2x2(1+x)2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com