Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 93786 by mr W last updated on 14/May/20

find f(x) such that  f ′(x)=f^(−1) (x)

$${find}\:{f}\left({x}\right)\:{such}\:{that} \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right) \\ $$

Answered by john santu last updated on 15/May/20

f(x)= ((1/ϕ))^(1/ϕ)  x^ϕ

$$\mathrm{f}\left(\mathrm{x}\right)=\:\sqrt[{\varphi}]{\frac{\mathrm{1}}{\varphi}}\:\mathrm{x}^{\varphi} \: \\ $$

Answered by  M±th+et+s last updated on 15/May/20

f(x)=kx^r /  k,r∈R  f′(x)=krx^(r−1)  , f^(−1) (x)=((x/k))^(1/r)   f′(x)=f^(−1) (x)⇔krx^(r−1) =((x/k))^(1/r)   krx^(r−1) =x^(1/r) ((1/k))^(1/r)   x^(r−1−(1/r)) =((1/k))^(1/r) ((1/(kr)))    f ′(x)=f^(−1) (x)⇔(r−1−(1/r)=0&((1/k))^((1/r)+1) ((1/r))=1)  f ′(x)=f^(−1) (x)⇔(r^2 −r−1=0&((1/k))^((1/r)+1) ((1/r))=1p)  f ′(x)=f^(−1) (x)⇔(r=((1±(√5))/2)&((1/k))^((1/r)+1) ((1/r))=1)  notice/((1+(√5))/2)=ϕ,((1−(√5))/2)=ϕ^� ;1+(1/r)=r  f ′(x)=f^(−1) (x)⇔(r=ϕ,ϕ^� &((1/k))^r =r)  f ′(x)=f^(−1) (x)⇔(r=ϕ,ϕ^� &k=(1/(r)^(1/r) ))  f_ϕ (x)=(1/(ϕ)^(1/ϕ) )x^ϕ ,f_ϕ^�  (x)=(1/(ϕ^� )^(1/ϕ^� ) )x^ϕ     notice/′′ϕ′′ is golden ratio

$${f}\left({x}\right)={kx}^{{r}} /\:\:{k},{r}\in{R} \\ $$$${f}'\left({x}\right)={krx}^{{r}−\mathrm{1}} \:,\:{f}^{−\mathrm{1}} \left({x}\right)=\left(\frac{{x}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}} \\ $$$${f}'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow{krx}^{{r}−\mathrm{1}} =\left(\frac{{x}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}} \\ $$$${krx}^{{r}−\mathrm{1}} ={x}^{\frac{\mathrm{1}}{{r}}} \left(\frac{\mathrm{1}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}} \\ $$$${x}^{{r}−\mathrm{1}−\frac{\mathrm{1}}{{r}}} =\left(\frac{\mathrm{1}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}} \left(\frac{\mathrm{1}}{{kr}}\right) \\ $$$$ \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow\left({r}−\mathrm{1}−\frac{\mathrm{1}}{{r}}=\mathrm{0\&}\left(\frac{\mathrm{1}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}+\mathrm{1}} \left(\frac{\mathrm{1}}{{r}}\right)=\mathrm{1}\right) \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow\left({r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0\&}\left(\frac{\mathrm{1}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}+\mathrm{1}} \left(\frac{\mathrm{1}}{{r}}\right)=\mathrm{1}{p}\right) \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow\left({r}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\&\left(\frac{\mathrm{1}}{{k}}\right)^{\frac{\mathrm{1}}{{r}}+\mathrm{1}} \left(\frac{\mathrm{1}}{{r}}\right)=\mathrm{1}\right) \\ $$$${notice}/\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\varphi,\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}=\bar {\varphi};\mathrm{1}+\frac{\mathrm{1}}{{r}}={r} \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow\left({r}=\varphi,\bar {\varphi}\&\left(\frac{\mathrm{1}}{{k}}\right)^{{r}} ={r}\right) \\ $$$${f}\:'\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\Leftrightarrow\left({r}=\varphi,\bar {\varphi}\&{k}=\frac{\mathrm{1}}{\sqrt[{{r}}]{{r}}}\right) \\ $$$${f}_{\varphi} \left({x}\right)=\frac{\mathrm{1}}{\sqrt[{\varphi}]{\varphi}}{x}^{\varphi} ,{f}_{\bar {\varphi}} \left({x}\right)=\frac{\mathrm{1}}{\sqrt[{\bar {\varphi}}]{\bar {\varphi}}}{x}^{\varphi} \\ $$$$ \\ $$$${notice}/''\varphi''\:{is}\:{golden}\:{ratio} \\ $$

Commented by mr W last updated on 15/May/20

thank you both!  you assumed y=kx^r . but are there  any other solutions?

$${thank}\:{you}\:{both}! \\ $$$${you}\:{assumed}\:{y}={kx}^{{r}} .\:{but}\:{are}\:{there} \\ $$$${any}\:{other}\:{solutions}? \\ $$

Commented by  M±th+et+s last updated on 15/May/20

mybe there is, but i couldn′t find just this

$${mybe}\:{there}\:{is},\:{but}\:{i}\:{couldn}'{t}\:{find}\:{just}\:{this} \\ $$

Answered by hovero clinton last updated on 15/May/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com