Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93804 by i jagooll last updated on 15/May/20

∫ x (((3x−1)/(x+2)))^(1/(3  ))  dx ?

x3x1x+23dx?

Commented by i jagooll last updated on 15/May/20

set t^3  = ((3x−1)/(x+2)) ⇒ xt^3 +2t^3 =3x−1   x=((−1−2t^3 )/(t^3 −3))= ((−2t^3 −1)/(t^3 −1))  dx = ((9t^2 )/((t^3 −1)^2 )) dt   ⇒ ∫ (((−2t^3 −1)/(t^3 −3))).t (((9t^2 )/((t^3 −1)^2 ))) dt  ∫ ((−9t^3 (2t^3 +1))/((t^3 −1)^2 (t^3 −3))) dt   stuck???

sett3=3x1x+2xt3+2t3=3x1x=12t3t33=2t31t31dx=9t2(t31)2dt(2t31t33).t(9t2(t31)2)dt9t3(2t3+1)(t31)2(t33)dtstuck???

Commented by mathmax by abdo last updated on 15/May/20

this integral is solved by a lots of calculus   I =∫ x(^3 (√((3x−1)/(x+2))))dx changement^3 (√((3x−1)/(x+2)))=t give  ((3x−1)/(x+2)) =t^3  ⇒3x−1 =t^3 x+2t^3  ⇒(3−t^3 )x =2t^3  +1 ⇒x =((2t^3  +1)/(3−t^3 ))  ⇒(dx/dt) =((6t^2 (3−t^3 )−(2t^3  +1)(−3t^2 ))/((3−t^3 )^2 )) =((18t^2 −6t^5  +6t^5 −3t^2 )/((3−t^3 )^2 ))  =((15t^2 )/((3−t^3 )^2 )) ⇒ I =∫ (((2t^3  +1)/(3−t^3 )))t ((15t^2 )/((3−t^3 )^2 )) dt  = ∫ ((30t^5  +15t^2 )/((3−t^3 )^3 ))dt =−15∫  ((2t^5  +t^2 )/((t^3 −3)^3 ))dt     let α =^3 (√3) ⇒  ∫  ((2t^5  +t^2 )/((t^3 −α^3 )^3 ))dt =∫  ((2t^5  +t^2 )/((t−α)^3 (t^2  +αt +α^2 )^3 ))dt  =∫  ((2t^5  +t^2 )/((((t−α)/(t^2  +αt +α^2 )))^3  (t^2  +αt +α^2 )^6 ))dt  changement ((t−α)/(t^2  +αt +α^2 )) =u give  t+α =ut^2  +uαt +uα^2  ⇒ ut^2  +uαt −t−α+uα^2  =0 ⇒  ut^2  +(αu−1)t +uα^2 −α =0  Δ =(αu−1)^2 −4u(uα^2 −α) =α^2 u^2 −2αu −4α^2 u^2 +4αu  =−3α^2 u^2 +2αu ⇒ t =((1−αu+^− (√(2αu−3α^2 u^2 )))/(2u)) ⇒  t =(1/(2u))−(α/2) +^− ((√(2αu−3α^2 u^2 ))/(2u)) ⇒  (dt/du) =−(1/(2u^2 )) +^−  (1/2)((√(((2αu)/(4u^2 ))−((3α^2 u^2 )/(4u^2 )))))^′   =−(1/(2u^2 )) +^− (1/2)((√((α/(2u))−((3α^2 )/4))))^′  =−(1/(2u^2 )) +^− (1/2)(((−(α/(2u^2 )))/(2(√((α/(2u))−((3α^2 )/4))))))  =−(1/(2u^2 )) +^− (α/(8u^2 (√((α/(2u))−((3α^2 )/4)))))   ....be continued....

thisintegralissolvedbyalotsofcalculusI=x(33x1x+2)dxchangement33x1x+2=tgive3x1x+2=t33x1=t3x+2t3(3t3)x=2t3+1x=2t3+13t3dxdt=6t2(3t3)(2t3+1)(3t2)(3t3)2=18t26t5+6t53t2(3t3)2=15t2(3t3)2I=(2t3+13t3)t15t2(3t3)2dt=30t5+15t2(3t3)3dt=152t5+t2(t33)3dtletα=332t5+t2(t3α3)3dt=2t5+t2(tα)3(t2+αt+α2)3dt=2t5+t2(tαt2+αt+α2)3(t2+αt+α2)6dtchangementtαt2+αt+α2=ugivet+α=ut2+uαt+uα2ut2+uαttα+uα2=0ut2+(αu1)t+uα2α=0Δ=(αu1)24u(uα2α)=α2u22αu4α2u2+4αu=3α2u2+2αut=1αu+2αu3α2u22ut=12uα2+2αu3α2u22udtdu=12u2+12(2αu4u23α2u24u2)=12u2+12(α2u3α24)=12u2+12(α2u22α2u3α24)=12u2+α8u2α2u3α24....becontinued....

Commented by i jagooll last updated on 15/May/20

very hard sir?

veryhardsir?

Answered by MJS last updated on 15/May/20

∫x(((3x−1)/(x+2)))^(1/3) dx=       [t=(((3x−1)/(x+2)))^(1/3)  ⇔ x=−((2t^3 +1)/(t^3 −3)) → dx=((21t^2 )/((t^3 −3)^2 ))dt]  =−21∫((t^3 (2t^3 +1))/((t^3 −3)^3 ))dt=       [Ostrogradski]  =((7t(43t^3 −66))/(18(t^3 −3)^2 ))−((77)/9)∫(dt/(t^3 −3))  now use this formula:  ∫(dt/(t^3 −a^3 ))=(1/(3a^2 ))∫(dt/(t−a))−(1/(3a^2 ))∫((t+2a)/(t^2 +at+a^2 ))dt  these should be easy to solve

x3x1x+23dx=[t=3x1x+23x=2t3+1t33dx=21t2(t33)2dt]=21t3(2t3+1)(t33)3dt=[Ostrogradski]=7t(43t366)18(t33)2779dtt33nowusethisformula:dtt3a3=13a2dtta13a2t+2at2+at+a2dttheseshouldbeeasytosolve

Commented by MJS last updated on 15/May/20

(1/(3a^2 ))∫(dt/(t−a))=(1/(3a^2 ))ln ∣t−a∣  (1/(3a^2 ))∫((t+2a)/(t^2 +at+a^2 ))dt=−(1/(6a^2 ))ln ∣t^2 +at+a^2 ∣ −((√3)/(3a^2 ))arctan (((√3)(2t+a))/(3a))

13a2dtta=13a2lnta13a2t+2at2+at+a2dt=16a2lnt2+at+a233a2arctan3(2t+a)3a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com