All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 93820 by i jagooll last updated on 15/May/20
∫x2dxx2−x+1
Commented by mathmax by abdo last updated on 17/May/20
I=∫x2x2−x+1dx⇒I=∫x2−x+1x2−x+1dx+∫x−1x2−x+1dx=I1+I2∫x2−x+1x2−x+1dx=∫x2−x+1dx=∫(x−12)2+34dx=x−12=32sh(t)32∫ch(t)×32ch(t)dt=34∫(1+ch(2t)2)dt=38t+316sh(2t)+c=38t+38sh(t)ch(t)+c=38argsh(2x−13)+38(2x−13)1+(2x−13)2I2=12∫2x−1−1x2−x+1dx=x2−x+1−12∫dxx2−x+1∫dxx2−x+1=x−12=32t32∫dt321+t2=∫dt1+t2=ln(t+1+t2)=ln(2x−13+1+(2x−13)2)⇒I=38ln(2x−13+1+(2x−13)2)+2x−181+(2x−13)2+x2−x+1−12ln(2x−13+1+(2x−13)2)+C=−18ln(2x−13+1+(2x−13)2)+x2−x+1+2x−181+(2x−13)2+C
Answered by Kunal12588 last updated on 15/May/20
I=∫x2dxx2−x+1=∫x2−x+1x2−x+1dx+∫x−1x2−x+1dx=∫x2−x+1dx+12∫2x−1x2−x+1dx−12∫dxx2−x+1=∫(x−12)2+(32)2dx+12∫d(x2−x+1)x2−x+1−12∫dx(x−12)+(32)2=12(x−12)x2−x+1+38ln∣x−12+x2−x+1∣+12×2x2−x+1−12×23tan−12x−13+C=14(2x−1)x2−x+1+38ln∣x−12+x2−x+1∣+x2−x+1−13tan−12x−13+C=14(2x+3)x2−x+1+38ln∣x−12+x2−x+1∣−13tan−12x−13+C
Commented by i jagooll last updated on 15/May/20
waw..greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com