Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93820 by i jagooll last updated on 15/May/20

∫ ((x^2  dx)/(√(x^2 −x+1)))

x2dxx2x+1

Commented by mathmax by abdo last updated on 17/May/20

I =∫  (x^2 /(√(x^2 −x+1)))dx ⇒I =∫ ((x^2 −x+1)/(√(x^2 −x+1)))dx +∫ ((x−1)/(√(x^2 −x+1)))dx=I_1  +I_2   ∫ ((x^2 −x+1)/(√(x^2 −x+1)))dx =∫(√(x^2 −x+1))dx =∫ (√((x−(1/2))^2 +(3/4)))dx  =_(x−(1/2)=((√3)/2)sh(t))   ((√3)/2) ∫ ch(t)×((√3)/2) ch(t)dt =(3/4)∫(((1+ch(2t))/2))dt  =(3/8) t  +(3/(16))sh(2t) +c =(3/8)t +(3/8)sh(t)ch(t) +c  =(3/8) argsh(((2x−1)/(√3)))+(3/8)(((2x−1)/3))(√(1+(((2x−1)/(√3)))^2 ))  I_2 =(1/2)∫((2x−1−1)/(√(x^2 −x+1))) dx =(√(x^2 −x+1)) −(1/2) ∫ (dx/(√(x^2 −x+1)))  ∫ (dx/(√(x^2 −x+1))) =_(x−(1/2)=((√3)/2)t)    ((√3)/2) ∫  (dt/(((√3)/2)(√(1+t^2 )))) =∫ (dt/(√(1+t^2 ))) =ln(t+(√(1+t^2 )))  =ln(((2x−1)/(√3))+(√(1+(((2x−1)/((√3) )))^2 ))) ⇒  I =(3/8)ln(((2x−1)/(√3))+(√(1+(((2x−1)/(√3)))^2 ))) +((2x−1)/8)(√(1+(((2x−1)/(√3)))^2 ))  +(√(x^2 −x+1))−(1/2)ln(((2x−1)/(√3))+(√(1+(((2x−1)/(√3)))^2 ))) +C  =−(1/8)ln(((2x−1)/(√3))+(√(1+(((2x−1)/(√3)))^2 )))+(√(x^2 −x+1))+((2x−1)/8)(√(1+(((2x−1)/(√3)))^2 ))+C

I=x2x2x+1dxI=x2x+1x2x+1dx+x1x2x+1dx=I1+I2x2x+1x2x+1dx=x2x+1dx=(x12)2+34dx=x12=32sh(t)32ch(t)×32ch(t)dt=34(1+ch(2t)2)dt=38t+316sh(2t)+c=38t+38sh(t)ch(t)+c=38argsh(2x13)+38(2x13)1+(2x13)2I2=122x11x2x+1dx=x2x+112dxx2x+1dxx2x+1=x12=32t32dt321+t2=dt1+t2=ln(t+1+t2)=ln(2x13+1+(2x13)2)I=38ln(2x13+1+(2x13)2)+2x181+(2x13)2+x2x+112ln(2x13+1+(2x13)2)+C=18ln(2x13+1+(2x13)2)+x2x+1+2x181+(2x13)2+C

Answered by Kunal12588 last updated on 15/May/20

I=∫((x^2 dx)/(√(x^2 −x+1)))  =∫((x^2 −x+1)/(√(x^2 −x+1)))dx+∫((x−1)/(√(x^2 −x+1)))dx  =∫(√(x^2 −x+1)) dx + (1/2)∫((2x−1)/(√(x^2 −x+1)))dx−(1/2)∫(dx/(√(x^2 −x+1)))  =∫(√((x−(1/2))^2 +(((√3)/2))^2 )) dx + (1/2)∫((d(x^2 −x+1))/(√(x^2 −x+1)))          −(1/2)∫(dx/(√((x−(1/2))+(((√3)/2))^2 )))  =(1/2)(x−(1/2))(√(x^2 −x+1))+(3/8)ln∣x−(1/2)+(√(x^2 −x+1))∣     +(1/2)×2(√(x^2 −x+1))−(1/2)×(2/(√3)) tan^(−1) ((2x−1)/(√3))+C  =(1/4)(2x−1)(√(x^2 −x+1))+(3/8)ln∣x−(1/2)+(√(x^2 −x+1))∣      +(√(x^2 −x+1))−(1/(√3))tan^(−1) ((2x−1)/(√3))+C  =(1/4)(2x+3)(√(x^2 −x+1))+(3/8)ln∣x−(1/2)+(√(x^2 −x+1))∣       −(1/(√3))tan^(−1) ((2x−1)/(√3))+C

I=x2dxx2x+1=x2x+1x2x+1dx+x1x2x+1dx=x2x+1dx+122x1x2x+1dx12dxx2x+1=(x12)2+(32)2dx+12d(x2x+1)x2x+112dx(x12)+(32)2=12(x12)x2x+1+38lnx12+x2x+1+12×2x2x+112×23tan12x13+C=14(2x1)x2x+1+38lnx12+x2x+1+x2x+113tan12x13+C=14(2x+3)x2x+1+38lnx12+x2x+113tan12x13+C

Commented by i jagooll last updated on 15/May/20

waw..great sir

waw..greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com