Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 93836 by oustmuchiya@gmail.com last updated on 15/May/20

If cosα+cosβ+cosγ=0 = sinα+sinβ+sinγ, prove that  (i) cos3α+cos3β+cosγ = 3cos(a+β+γ)  (ii) sin3α+sin3β+sinγ = 3sin(α+β+γ)  (iii) cos2α+cos2β+cos2γ = 0  (iv) sin2α+sin2β+sin2γ = 0  (Hints: Take a=cis α, b=cis β, c=cis γ, a+b+c=0 ⇒ a^3 +b^3 +c^3 =3abc  (1/a)+(1/b)+(1/c)=0 ⇒ a^2 +b^2 +c^2 =0)  (v) cos^2 α+cos^2 β+cosγ = sin^2 α+sin^2 β+sin^2 γ = (3/2).

Ifcosα+cosβ+cosγ=0=sinα+sinβ+sinγ,provethat(i)cos3α+cos3β+cosγ=3cos(a+β+γ)(ii)sin3α+sin3β+sinγ=3sin(α+β+γ)(iii)cos2α+cos2β+cos2γ=0(iv)sin2α+sin2β+sin2γ=0(Hints:Takea=cisα,b=cisβ,c=cisγ,a+b+c=0a3+b3+c3=3abc1a+1b+1c=0a2+b2+c2=0)(v)cos2α+cos2β+cosγ=sin2α+sin2β+sin2γ=32.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com