Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 93859 by  M±th+et+s last updated on 15/May/20

Σ_(n=1) ^∞  (1/(n(n+1)))

n=11n(n+1)

Answered by Ar Brandon last updated on 15/May/20

(1/(n(n+1)))=(1/n)−(1/(n+1))⇒Σ_(n=1) ^∞ (1/(n(n+1)))=Σ_(n=1) ^∞ [(1/n)−(1/(n+1))]=lim_(k→+∞) Σ_(n=1) ^k [(1/n)−(1/(n+1))]  =lim_(k→+∞) [1−(1/2)+(1/2)−(1/3)+(1/3)−(1/4)+∙∙∙+(1/k)−(1/(k+1))]  =lim_(k→+∞) [1−(1/(k+1))]=1

1n(n+1)=1n1n+1n=11n(n+1)=n=1[1n1n+1]=limk+kn=1[1n1n+1]=limk+[112+1213+1314++1k1k+1]=limk+[11k+1]=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com