Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93860 by Ar Brandon last updated on 15/May/20

Consider the progression (I_n )_(n∈N)  where I_n  =∫_0 ^1 ((sin(πt))/(t+n))dt  1\ Show that: ∀n≥0, 0≤I_(n+1) ≤I_n  and deduce that the   series is convergent.  2\ Show that 0≤I_n ≤ln(((n+1)/n)) and deduce the limit  the series (I_n )_(n∈N)   3\ Calculate lim_(n→+∞) (nI_n )

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{progression}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{where}\:\mathrm{I}_{\mathrm{n}} \:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\left(\pi\mathrm{t}\right)}{\mathrm{t}+\mathrm{n}}\mathrm{dt} \\ $$$$\mathrm{1}\backslash\:\mathrm{Show}\:\mathrm{that}:\:\forall\mathrm{n}\geqslant\mathrm{0},\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}+\mathrm{1}} \leqslant\mathrm{I}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{series}\:\mathrm{is}\:\mathrm{convergent}. \\ $$$$\mathrm{2}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\mathrm{ln}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\mathrm{the}\:\mathrm{series}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \\ $$$$\mathrm{3}\backslash\:\mathrm{Calculate}\:\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\left(\mathrm{nI}_{\mathrm{n}} \right) \\ $$

Commented by mathmax by abdo last updated on 15/May/20

1) I_n =∫_0 ^1  ((sin(πt))/(t+n))dt   its clear that I_n ≥0   we have I_n −I_(n+1) =∫_0 ^1  ((sin(πt))/(t+n))dt−∫_0 ^1  ((sin(πt))/(t+n+1))dt  =∫_0 ^1 sin(πt)((1/(t+n))−(1/(t+n+1)))dt =∫_0 ^1   ((sin(πt))/((t+n)(t+n+1)))dt ≥0 ⇒  ( sin(πt)≥0 on[0,1])    I_n is decrasing and minored by 0 ⇒  I_n is convergent.

$$\left.\mathrm{1}\right)\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\pi{t}\right)}{{t}+{n}}{dt}\:\:\:{its}\:{clear}\:{that}\:{I}_{{n}} \geqslant\mathrm{0}\: \\ $$$${we}\:{have}\:{I}_{{n}} −{I}_{{n}+\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\pi{t}\right)}{{t}+{n}}{dt}−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\pi{t}\right)}{{t}+{n}+\mathrm{1}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {sin}\left(\pi{t}\right)\left(\frac{\mathrm{1}}{{t}+{n}}−\frac{\mathrm{1}}{{t}+{n}+\mathrm{1}}\right){dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{sin}\left(\pi{t}\right)}{\left({t}+{n}\right)\left({t}+{n}+\mathrm{1}\right)}{dt}\:\geqslant\mathrm{0}\:\Rightarrow \\ $$$$\left(\:{sin}\left(\pi{t}\right)\geqslant\mathrm{0}\:{on}\left[\mathrm{0},\mathrm{1}\right]\right)\:\:\:\:{I}_{{n}} {is}\:{decrasing}\:{and}\:{minored}\:{by}\:\mathrm{0}\:\Rightarrow \\ $$$${I}_{{n}} {is}\:{convergent}. \\ $$

Commented by mathmax by abdo last updated on 15/May/20

2) we have I_n =∫_0 ^1  ((sin(πt))/(t+n))dt ≤∫_0 ^1  (dt/(t+n)) =[ln(t+n)]_0 ^1 =ln(((n+1)/n)) ⇒  0≤I_n ≤ln(((n+1)/n))  we have ln(((n+1)/n))=ln(1+(1/n))→0(n→+∞) ⇒  lim_(n→+∞)  I_n =0

$$\left.\mathrm{2}\right)\:{we}\:{have}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\pi{t}\right)}{{t}+{n}}{dt}\:\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{t}+{n}}\:=\left[{ln}\left({t}+{n}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} ={ln}\left(\frac{{n}+\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$$\mathrm{0}\leqslant{I}_{{n}} \leqslant{ln}\left(\frac{{n}+\mathrm{1}}{{n}}\right)\:\:{we}\:{have}\:{ln}\left(\frac{{n}+\mathrm{1}}{{n}}\right)={ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\rightarrow\mathrm{0}\left({n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} =\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 15/May/20

3) we have I_n =∫_0 ^1  ((sin(πt))/(t+n))dt =_(πt =x)   ∫_0 ^π  ((sin(x))/((x/π)+n)) (dx/π)  =∫_0 ^π  ((sinx)/(x+nπ))dx =(1/n)∫_0 ^π  ((sin(x))/((x/n)+π))dx ⇒nI_n =∫_0 ^π  ((sinx)/((x/n)+π))dx ⇒  lim_(n→+∞)  nI_n =(1/π)∫_0 ^π  sinx dx =(1/π)[−cosx]_0 ^π  =(2/π)

$$\left.\mathrm{3}\right)\:{we}\:{have}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left(\pi{t}\right)}{{t}+{n}}{dt}\:=_{\pi{t}\:={x}} \:\:\int_{\mathrm{0}} ^{\pi} \:\frac{{sin}\left({x}\right)}{\frac{{x}}{\pi}+{n}}\:\frac{{dx}}{\pi} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\frac{{sinx}}{{x}+{n}\pi}{dx}\:=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\pi} \:\frac{{sin}\left({x}\right)}{\frac{{x}}{{n}}+\pi}{dx}\:\Rightarrow{nI}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:\frac{{sinx}}{\frac{{x}}{{n}}+\pi}{dx}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{nI}_{{n}} =\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} \:{sinx}\:{dx}\:=\frac{\mathrm{1}}{\pi}\left[−{cosx}\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{2}}{\pi} \\ $$

Commented by Ar Brandon last updated on 15/May/20

Great job, thanks ��

Commented by mathmax by abdo last updated on 16/May/20

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com