Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93873 by mathmax by abdo last updated on 15/May/20

find ∫_(−∞) ^∞    (dx/((x^2 +2x+4)^3 ))

finddx(x2+2x+4)3

Commented by mathmax by abdo last updated on 16/May/20

I =∫_(−∞) ^(+∞)  (dx/((x^2  +2x+4)^3 )) ⇒ I =∫_(−∞) ^(+∞)  (dx/(((x+1)^2  +3)^3 ))  =_(x+1 =(√3)t)     ∫_(−∞) ^(+∞)  (((√3)dt)/(27(t^2  +1)^3 )) =((√3)/(27)) ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^3 ))  let ϕ(z) =(1/((z^2  +1)^3 )) ⇒ϕ(z) =(1/((z−i)^3 (z+i)^3 )) so the poles of ϕ are  i and −i  (triples)and ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((3−1)!)){(z−i)^3  ϕ(z)}^((2))   =(1/2)lim_(z→i)    {(z+i)^(−3) }^((2))  =(1/2)lim_(z→i)   {−3(z+i)^(−4) }^((1))   =(1/2)lim_(z→i)    12 (z+i)^(−5)  =6 (2i)^(−5)  =(6/((2i)^5 )) =(6/(32 i)) =(3/(16i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(3/(16i)) =((3π)/8) ⇒ I =((√3)/(27))×((3π)/8) =((π(√3))/(72))  ★ I = ((π(√3))/(72))★

I=+dx(x2+2x+4)3I=+dx((x+1)2+3)3=x+1=3t+3dt27(t2+1)3=327+dt(t2+1)3letφ(z)=1(z2+1)3φ(z)=1(zi)3(z+i)3sothepolesofφareiandi(triples)and+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=12limzi{(z+i)3}(2)=12limzi{3(z+i)4}(1)=12limzi12(z+i)5=6(2i)5=6(2i)5=632i=316i+φ(z)dz=2iπ×316i=3π8I=327×3π8=π372I=π372

Answered by Ar Brandon last updated on 15/May/20

L_n =∫((Ax+B)/((x^2 +px+q)^n ))dx⇒L_n =(B−((Ap)/2))∫_(−∞) ^(+∞) (1/([(x+(p/2))^2 +((√(q−(p^2 /4))))^2 ]^n ))dx  A=0, B=1, p=2, q=4, n=3  ⇒L_3 =∫_(−∞) ^(+∞) (dx/((x^2 +2x+4)^3 ))=∫_(−∞) ^(+∞) (dx/([(x+1)^2 +((√3))^2 ]^3 ))  J_n =∫_(−∞) ^(+∞) (1/([x^2 +u^2 ]^n ))dx⇒J_n =((2n−3)/(2u^2 (n−1)))J_(n−1)   J_1 =∫_(−∞) ^(+∞) (dx/((x+1)^2 +((√3))^2 ))=((√3)/3)⌊tan^(−1) [((x+1)/(√3))]⌋_(−∞) ^(+∞) =((π(√3))/3)  J_2 =((π(√3))/(18))⇒J_3 =(3/(12))∙((π(√3))/(18))=((π(√3))/(72))  ∫_(−∞) ^(+∞) (dx/((x^2 +2x+4)^3 ))=((π(√3))/(72))

Ln=Ax+B(x2+px+q)ndxLn=(BAp2)+1[(x+p2)2+(qp24)2]ndxA=0,B=1,p=2,q=4,n=3L3=+dx(x2+2x+4)3=+dx[(x+1)2+(3)2]3Jn=+1[x2+u2]ndxJn=2n32u2(n1)Jn1J1=+dx(x+1)2+(3)2=33tan1[x+13]+=π33J2=π318J3=312π318=π372+dx(x2+2x+4)3=π372

Commented by Ar Brandon last updated on 15/May/20

In case of necessity please check my solution to Q.93639 for Ln and Jn ��

Commented by mathmax by abdo last updated on 16/May/20

thank you sir .

thankyousir.

Commented by Ar Brandon last updated on 16/May/20

cheers ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com