All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 93892 by frc2crc last updated on 15/May/20
letan+1=2+ana0=2findlimn→∞an+1
Commented by Tony Lin last updated on 16/May/20
letf(x)=2+xf′(x)=14x⋅2+x>0∴f(x)isanincreasingfunctionsimilarily⟨an⟩isanincreasingseriesletak⩽1.84ak+1⩽2+1.84⩽1.84⟨an⟩hasupperbound∴limn→∞an+1existsandequalslimn→∞anletlimn→∞an+1=xx=2+xx2=2+x(x2−2)2=xx4−4x2−x+4=0(x−1)(x3+x2−3x−4)=01<a0=2(false)x3+x2−3x−4=0lett=x+13,x=t−13t3−103t−7927=0lett=u+v(u+v)3−103(u+v)−7927=0u3+v3−7927=(103−3uv)(u+v)supposeuv=109→u3+v3=7927{u3+v3=7927=−bau3v3=1000729=ca⇒729y2−2133y+1000=0y=−7954±8336(oneisu3,anotherisv3)t=3−7954+8336+3−7954−8336(realrootone)x=t−13=3−7954+8336+3−7954−8336−13≈1.8312⇒limn→∞an+1=x≈1.8312
Theonlyuseofa0=2istoverifythatlimn→∞an+1shouldbebiggerthana0=2because⟨an⟩isanincreasingseriesand1.8312>2whichistheupperboundoftheseries
Commented by frc2crc last updated on 16/May/20
whatis1.8312ittermsof2?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com