Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 93892 by frc2crc last updated on 15/May/20

let  a_(n+1) =(√(2+(√a_n )))      a_0 =(√2)  find lim_(n→∞)  a_(n+1)

$${let} \\ $$$${a}_{{n}+\mathrm{1}} =\sqrt{\mathrm{2}+\sqrt{{a}_{{n}} }}\:\:\:\:\:\:{a}_{\mathrm{0}} =\sqrt{\mathrm{2}} \\ $$$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}+\mathrm{1}} \\ $$

Commented by Tony Lin last updated on 16/May/20

let f(x)=(√(2+(√x)))  f ′(x)=(1/(4(√x)∙(√(2+(√x)))))>0  ∴f(x) is an increasing function  similarily  ⟨a_n ⟩ is an increasing series  let a_k ≤1.84  a_(k+1) ≤(√(2+(√(1.84))))≤1.84  ⟨a_n ⟩ has upper bound  ∴ lim_(n→∞) a_(n+1)  exists and equals lim_(n→∞) a_n   let lim_(n→∞) a_(n+1) =x  x=(√(2+(√x)))  x^2 =2+(√x)  (x^2 −2)^2 =x  x^4 −4x^2 −x+4=0  (x−1)(x^3 +x^2 −3x−4)=0  1<a_0 =(√2)(false)  x^3 +x^2 −3x−4=0  let t=x+(1/3) ,x=t−(1/3)  t^3 −((10)/3)t−((79)/(27))=0  let t=u+v  (u+v)^3 −((10)/3)(u+v)−((79)/(27))=0  u^3 +v^3 −((79)/(27))=(((10)/3)−3uv)(u+v)  suppose uv=((10)/9)  →u^3 +v^3 =((79)/(27))   { ((u^3 +v^3 =((79)/(27))=−(b/a))),((u^3 v^3 =((1000)/(729))=(c/a))) :}  ⇒729y^2 −2133y+1000=0  y=−((79)/(54))±((√((83)/3))/6) (one is u^3 ,another is v^3 )  t=_3 (√(−((79)/(54))+((√((83)/3))/6)))+_3 (√(−((79)/(54))−((√((83)/3))/6)))  (real root one)  x=t−(1/3)  =_3 (√(−((79)/(54))+((√((83)/3))/6)))+_3 (√(−((79)/(54))−((√((83)/3))/6)))−(1/3)  ≈1.8312  ⇒lim_(n→∞) a_(n+1) =x≈1.8312

$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{2}+\sqrt{{x}}} \\ $$$${f}\:'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}\sqrt{{x}}\centerdot\sqrt{\mathrm{2}+\sqrt{{x}}}}>\mathrm{0} \\ $$$$\therefore{f}\left({x}\right)\:{is}\:{an}\:{increasing}\:{function} \\ $$$${similarily} \\ $$$$\langle{a}_{{n}} \rangle\:{is}\:{an}\:{increasing}\:{series} \\ $$$${let}\:{a}_{{k}} \leqslant\mathrm{1}.\mathrm{84} \\ $$$${a}_{{k}+\mathrm{1}} \leqslant\sqrt{\mathrm{2}+\sqrt{\mathrm{1}.\mathrm{84}}}\leqslant\mathrm{1}.\mathrm{84} \\ $$$$\langle{a}_{{n}} \rangle\:{has}\:{upper}\:{bound} \\ $$$$\therefore\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}+\mathrm{1}} \:{exists}\:{and}\:{equals}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} \\ $$$${let}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}+\mathrm{1}} ={x} \\ $$$${x}=\sqrt{\mathrm{2}+\sqrt{{x}}} \\ $$$${x}^{\mathrm{2}} =\mathrm{2}+\sqrt{{x}} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} ={x} \\ $$$${x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} −{x}+\mathrm{4}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{1}<{a}_{\mathrm{0}} =\sqrt{\mathrm{2}}\left({false}\right) \\ $$$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}=\mathrm{0} \\ $$$${let}\:{t}={x}+\frac{\mathrm{1}}{\mathrm{3}}\:,{x}={t}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${t}^{\mathrm{3}} −\frac{\mathrm{10}}{\mathrm{3}}{t}−\frac{\mathrm{79}}{\mathrm{27}}=\mathrm{0} \\ $$$${let}\:{t}={u}+{v} \\ $$$$\left({u}+{v}\right)^{\mathrm{3}} −\frac{\mathrm{10}}{\mathrm{3}}\left({u}+{v}\right)−\frac{\mathrm{79}}{\mathrm{27}}=\mathrm{0} \\ $$$${u}^{\mathrm{3}} +{v}^{\mathrm{3}} −\frac{\mathrm{79}}{\mathrm{27}}=\left(\frac{\mathrm{10}}{\mathrm{3}}−\mathrm{3}{uv}\right)\left({u}+{v}\right) \\ $$$${suppose}\:{uv}=\frac{\mathrm{10}}{\mathrm{9}} \\ $$$$\rightarrow{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\frac{\mathrm{79}}{\mathrm{27}} \\ $$$$\begin{cases}{{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\frac{\mathrm{79}}{\mathrm{27}}=−\frac{{b}}{{a}}}\\{{u}^{\mathrm{3}} {v}^{\mathrm{3}} =\frac{\mathrm{1000}}{\mathrm{729}}=\frac{{c}}{{a}}}\end{cases} \\ $$$$\Rightarrow\mathrm{729}{y}^{\mathrm{2}} −\mathrm{2133}{y}+\mathrm{1000}=\mathrm{0} \\ $$$${y}=−\frac{\mathrm{79}}{\mathrm{54}}\pm\frac{\sqrt{\frac{\mathrm{83}}{\mathrm{3}}}}{\mathrm{6}}\:\left({one}\:{is}\:{u}^{\mathrm{3}} ,{another}\:{is}\:{v}^{\mathrm{3}} \right) \\ $$$${t}=_{\mathrm{3}} \sqrt{−\frac{\mathrm{79}}{\mathrm{54}}+\frac{\sqrt{\frac{\mathrm{83}}{\mathrm{3}}}}{\mathrm{6}}}+_{\mathrm{3}} \sqrt{−\frac{\mathrm{79}}{\mathrm{54}}−\frac{\sqrt{\frac{\mathrm{83}}{\mathrm{3}}}}{\mathrm{6}}} \\ $$$$\left({real}\:{root}\:{one}\right) \\ $$$${x}={t}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$=_{\mathrm{3}} \sqrt{−\frac{\mathrm{79}}{\mathrm{54}}+\frac{\sqrt{\frac{\mathrm{83}}{\mathrm{3}}}}{\mathrm{6}}}+_{\mathrm{3}} \sqrt{−\frac{\mathrm{79}}{\mathrm{54}}−\frac{\sqrt{\frac{\mathrm{83}}{\mathrm{3}}}}{\mathrm{6}}}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\approx\mathrm{1}.\mathrm{8312} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}+\mathrm{1}} ={x}\approx\mathrm{1}.\mathrm{8312} \\ $$

Commented by Tony Lin last updated on 16/May/20

The only use of a_0 =(√2)    is to verify that lim_(n→∞) a_(n+1)  should be  bigger than a_0 =(√2) because  ⟨a_n ⟩ is an increasing series  and 1.8312>(√2)  which is the upper bound of the series

$${The}\:{only}\:{use}\:{of}\:{a}_{\mathrm{0}} =\sqrt{\mathrm{2}}\:\: \\ $$$${is}\:{to}\:{verify}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}+\mathrm{1}} \:{should}\:{be} \\ $$$${bigger}\:{than}\:{a}_{\mathrm{0}} =\sqrt{\mathrm{2}}\:{because} \\ $$$$\langle{a}_{{n}} \rangle\:{is}\:{an}\:{increasing}\:{series} \\ $$$${and}\:\mathrm{1}.\mathrm{8312}>\sqrt{\mathrm{2}} \\ $$$${which}\:{is}\:{the}\:{upper}\:{bound}\:{of}\:{the}\:{series} \\ $$

Commented by frc2crc last updated on 16/May/20

what is 1.8312 it terms of (√2)?

$${what}\:{is}\:\mathrm{1}.\mathrm{8312}\:{it}\:{terms}\:{of}\:\sqrt{\mathrm{2}}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com