Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93937 by seedhamaieng@gmail.com last updated on 16/May/20

∫(1/(√(tan x)))dx=?

1tanxdx=?

Commented by i jagooll last updated on 16/May/20

∫ ((sec^2 x)/(sec^2 x (√(tan x)))) dx =  ∫ (du/((1+u^2 )(√u))) ,  [ u = tan x ]

sec2xsec2xtanxdx=du(1+u2)u,[u=tanx]

Commented by seedhamaieng@gmail.com last updated on 16/May/20

thanks

Commented by prakash jain last updated on 16/May/20

(√(tan x))=u  tan x=u^2   sec^2 xdx=2udu  (1+tan^2 x)dx=2udu  (1+u^4 )dx=2udu  dx=((2udu)/((1+u^4 )))   substituting value of x and dx in integral  ∫(1/u)×((2u)/((1+u^4 )))du  =∫(2/(1+u^4 ))du  =∫((u^2 +1+1−u^2 )/(1+u^4 ))du  =∫((u^2 +1)/(1+u^4 ))du−∫((u^2 −1)/(1+u^4 ))du  =∫((1+(1/u^2 ))/(u^2 +(1/u^2 )−2+2))du−∫((1−(1/u^2 ))/(u^2 +(1/u^2 )+2−2))du  =∫((1+(1/u^2 ))/((u−(1/u))^2 +2))du−∫((1−(1/u^2 ))/((u+(1/u))^2 −2))du  in first integrl v=u−(1/u)  in second integrl v=u+(1/u)  =∫(dv/(v^2 +2))+∫(dv/(v^2 −2))  Now the integral can be solved  using formulas for  (1/(x^2 +a^2 )),(1/(x^2 −a^2 ))   subtitute v with u and then x to  goet final answer

tanx=utanx=u2sec2xdx=2udu(1+tan2x)dx=2udu(1+u4)dx=2ududx=2udu(1+u4)substitutingvalueofxanddxinintegral1u×2u(1+u4)du=21+u4du=u2+1+1u21+u4du=u2+11+u4duu211+u4du=1+1u2u2+1u22+2du11u2u2+1u2+22du=1+1u2(u1u)2+2du11u2(u+1u)22duinfirstintegrlv=u1uinsecondintegrlv=u+1u=dvv2+2+dvv22Nowtheintegralcanbesolvedusingformulasfor1x2+a2,1x2a2subtitutevwithuandthenxtogoetfinalanswer

Commented by seedhamaieng@gmail.com last updated on 16/May/20

thanks sir

Commented by mathmax by abdo last updated on 16/May/20

I =∫  (dx/(√(tanx)))  changement (√(tanx))=t give tanx =t^2  ⇒x =arctan(t^2 )  I =∫   ((2t)/((1+t^4 )t))dt =∫  ((2dt)/(1+t^4 )) =∫  ((2/t^2 )/((1/t^2 ) +t^2 ))dt  =∫  ((1+(1/t^2 )+1−(1/t^2 ))/(t^2  +(1/t^2 )))dt =∫ ((1+(1/t^2 ))/((t−(1/t))^2 +2))dt +∫  ((1−(1/t^2 ))/((t+(1/t))^2 −2))dt =I_1 +I_2   I_1 =_(t−(1/t)=u)     ∫  (du/(u^2  +2)) =_(u=(√2)z)    ∫  (((√2)dz)/(2(1+z^2 ))) =(1/(√2)) arctan((u/(√2))) +c_1   =(1/(√2))arctan((1/(√2))(t−(1/t)))+c_1 =(1/(√2)) arctan((1/(√2))((√(tanx))−(1/(√(tanx))))) +c_1   I_2 =_(t+(1/t)=z)      ∫ (dz/(z^2 −2)) =∫  (dz/((z−(√2))(z+(√2)))) =(1/(2(√2)))∫ ((1/(z−(√2)))−(1/(z+(√2))))dz  =(1/(2(√2)))ln∣((z−(√2))/(z+(√2)))∣ +c_2 =(1/(2(√2)))ln∣(((√(tanx))+(1/((√(tanx)) ))−(√2))/((√(tanx))+(1/(√(tanx)))+(√2)))∣ +c_2   and I =I_1 +I_2

I=dxtanxchangementtanx=tgivetanx=t2x=arctan(t2)I=2t(1+t4)tdt=2dt1+t4=2t21t2+t2dt=1+1t2+11t2t2+1t2dt=1+1t2(t1t)2+2dt+11t2(t+1t)22dt=I1+I2I1=t1t=uduu2+2=u=2z2dz2(1+z2)=12arctan(u2)+c1=12arctan(12(t1t))+c1=12arctan(12(tanx1tanx))+c1I2=t+1t=zdzz22=dz(z2)(z+2)=122(1z21z+2)dz=122lnz2z+2+c2=122lntanx+1tanx2tanx+1tanx+2+c2andI=I1+I2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com