Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 93957 by O Predador last updated on 16/May/20

    log_((√(17))−(√2)) (((15)/(√(19+(√(136))))))x^2  − log_((√(19))−(√3)) ((1/(22−(√(228)))))x = 3      x = ?

log172(1519+136)x2log193(122228)x=3x=?

Commented by PRITHWISH SEN 2 last updated on 16/May/20

(√(19+(√(136)))) = (((√(34))+2)/(√2)) ⇒((15(√2))/((√(34))+2)) = (√(17))−(√2)  22−(√(228))=((√(19))−(√3))^2   log_((√(17))−(√2)) ((√(17))−(√2))x^2 −log_((√(19))−(√3)) x+2=3  2log_((√(17))−(√2)) x=log_((√(19))−(√3)) x  and the only possible solution for this is  x=1

19+136=34+2215234+2=17222228=(193)2log172(172)x2log193x+2=32log172x=log193xandtheonlypossiblesolutionforthisisx=1

Commented by O Predador last updated on 25/May/20

 Simplifying  the  radicals  shouldn′t  we  consider   it a  second  degree  equation?

Simplifyingtheradicalsshouldntweconsideritaseconddegreeequation?

Commented by O Predador last updated on 25/May/20

 Simplificando  os  radicais  na^� o  deve-se  considerar   uma  equac_� a^� o  do  segundo  grau?

Simplificandoosradicaisnao¯deveseconsiderarumaequacao¯dosegundograu?

Commented by PRITHWISH SEN 2 last updated on 25/May/20

English please

Englishplease

Commented by PRITHWISH SEN 2 last updated on 25/May/20

Actually  19+(√(136)) = ((38+2(√(136)))/2) = ((((√(34)))^2 +2^2 +2.(√(34)).2)/2)  =((((√(34)))^2 +2^2 +2.(√(34)).(√4))/2) = ((((√(34))+2)^2 )/(((√2))^2 ))  I think this will help you.

Actually19+136=38+21362=(34)2+22+2.34.22=(34)2+22+2.34.42=(34+2)2(2)2Ithinkthiswillhelpyou.

Commented by O Predador last updated on 26/May/20

    Grades:   { (((√(19+(√(136)))) = (√(17))+(√2))),((22−(√(228)) = ((√(19))−(√3))^2 )) :}      log_((√(17))−(√2)) ((√(17))−(√2))x^2 −log_((√(19))−(√3)) ((1/(((√(19))−(√3))^2 )))x = 3 ...      ... x^2 +2x = 3 ...   ... x^2 +2x+1 = 3+1 ...   ... x+1 = ±2 ...       { ((x_1 =−3)),((x_2 =1)) :}      Solution: {−3, 1}      Wouldn′t  that  be  so?

Grades:{19+136=17+222228=(193)2log172(172)x2log193(1(193)2)x=3......x2+2x=3......x2+2x+1=3+1......x+1=±2...{x1=3x2=1Solution:{3,1}Wouldntthatbeso?

Commented by PRITHWISH SEN 2 last updated on 26/May/20

no.  log_((√(17))−(√2)) ((√(17))−(√2))x^2 = log_((√(17))−(√2)) ((√(17))−(√2))+log_((√(17))−(√2)) x^2

no.log172(172)x2=log172(172)+log172x2

Commented by PRITHWISH SEN 2 last updated on 26/May/20

no.  because log_a bc = log_a b + log_a c

no.becauselogabc=logab+logac

Commented by O Predador last updated on 26/May/20

 but,  logarithms  are  the  “x”  coefficient.

but,logarithmsarethexcoefficient.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com