Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 94110 by Jidda28 last updated on 16/May/20

Commented by mathmax by abdo last updated on 17/May/20

a) let take a try let f(x) =e^(cosx)     maclaurin at 0  f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n    we can find f^((n)) (0) by recurrence  f is even ⇒f(x) =Σ_(n=0) ^∞  ((f^((2n)) (0))/((2n)!)) x^(2n)   we have f^′ (x) =−sinx f(x) ⇒f^((n)) (x) =−(sinx f(x))^((n−1))   =−Σ_(k=0) ^(n−1)  C_n ^k f^((k)) (x)(sinx)^((n−1−k))   =−Σ_(k=0) ^(n−1) C_n ^k  f^((k)) (x) sin(x+(((n−1−k)π)/2)) ⇒  f^((2n)) (x) =−Σ_(k=0) ^(2n−1)  C_(2n) ^k  f^((k)) (x)sin(x+(((2n−1−k)π)/2)) ⇒  f^((2n)) (0) =−Σ_(k=0) ^(2n−1) C_(2n) ^k  f^((k)) (0)sin((((2n−1)π)/2))  =−Σ_(k=0) ^(2n−1) C_(2n) ^k  f^((k)) (0)sin(nπ−(π/2)) =Σ_(k=0) ^(2n−1)  C_(2n) ^k  f^((k)) (0)  for exemple  n=2 ⇒f^((4)) (0) =Σ_(k=0) ^3 C_4 ^k  f^((k)) (0)  =C_4 ^0 f(0)+C_4 ^1 f^((1)) (0) +C_4 ^2 f^((2)) (0)+C_4 ^3 f^((3)) (0)=... and we can  write  f(x) =Σ_(n=0) ^∞  (1/(n!))(Σ_(k=0) ^(2n−1)  C_(2n) ^k  f^((k)) (0))x^(2n)   b) g(x)=e^(cos^2 x )  ⇒g(x) =e^((1+cos(2x))/2)   =(√e)× e^((1/2)cos(2x))   and we aplly  Q_n 1....

a)lettakeatryletf(x)=ecosxmaclaurinat0f(x)=n=0f(n)(0)n!xnwecanfindf(n)(0)byrecurrencefisevenf(x)=n=0f(2n)(0)(2n)!x2nwehavef(x)=sinxf(x)f(n)(x)=(sinxf(x))(n1)=k=0n1Cnkf(k)(x)(sinx)(n1k)=k=0n1Cnkf(k)(x)sin(x+(n1k)π2)f(2n)(x)=k=02n1C2nkf(k)(x)sin(x+(2n1k)π2)f(2n)(0)=k=02n1C2nkf(k)(0)sin((2n1)π2)=k=02n1C2nkf(k)(0)sin(nππ2)=k=02n1C2nkf(k)(0)forexemplen=2f(4)(0)=k=03C4kf(k)(0)=C40f(0)+C41f(1)(0)+C42f(2)(0)+C43f(3)(0)=...andwecanwritef(x)=n=01n!(k=02n1C2nkf(k)(0))x2nb)g(x)=ecos2xg(x)=e1+cos(2x)2=e×e12cos(2x)andweapllyQn1....

Commented by abdomathmax last updated on 17/May/20

if you have another way post it...

ifyouhaveanotherwaypostit...

Answered by niroj last updated on 17/May/20

  (a) e^(cos x)     let, f(x)= e^(cos x) ,       f(0)=e      f_1 (x)=− e^(cos x) .sin x ,    f_1 (0)=0    f_2 (x)= −[ −e^(cosx) .sin^2 x+ e^(cos x) .cosx)= e^(cos x) sin^2 x−e^(cos x) .cos x    f_2 (0)=−e     f_3 (x)= −e^(cos x) .sin^3  x+e^(cos x) sin2x    f_3 (0)=0   f_4 (x) = e^(cos x) sin^4 x−e^(cos x) .3sin^2 x.cos x−e^(cos x) .sinx.sin2x +2e^(cosx) .cos2x    f_4 (0)=2e   maclaurin′s series of expansion.    f(x)= f(0)+(x/(1!))f_1 (0)+(x^2 /(2!))f_2 (0)+(x^3 /(3!))f_3 (0)+(x^4 /(4!))f_4 (0)+...=.   e^(cos x) = e+ x.0+ (x^2 /(2!))(−e)+(x^3 /(3!)).(0)+(x^4 /(4!))(2e)+....    e^(cos x) = e− (1/2)x^2 e+ (2/(4.3.2.1))x^4 e+....   e^(cos x)  = e −(1/2)x^2 e + (1/(12))x^4 e+....

(a)ecosxlet,f(x)=ecosx,f(0)=ef1(x)=ecosx.sinx,f1(0)=0f2(x)=[ecosx.sin2x+ecosx.cosx)=ecosxsin2xecosx.cosxf2(0)=ef3(x)=ecosx.sin3x+ecosxsin2xf3(0)=0f4(x)=ecosxsin4xecosx.3sin2x.cosxecosx.sinx.sin2x+2ecosx.cos2xf4(0)=2emaclaurinsseriesofexpansion.f(x)=f(0)+x1!f1(0)+x22!f2(0)+x33!f3(0)+x44!f4(0)+...=.ecosx=e+x.0+x22!(e)+x33!.(0)+x44!(2e)+....ecosx=e12x2e+24.3.2.1x4e+....ecosx=e12x2e+112x4e+....

Commented by mathmax by abdo last updated on 17/May/20

but f^((n)) (0) still unknown...!

butf(n)(0)stillunknown...!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com