Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 94161 by i jagooll last updated on 17/May/20

∫ (dx/(p+(√(qx+r))))

dxp+qx+r

Commented by mathmax by abdo last updated on 17/May/20

I =∫  (dx/(p+(√(qx+r))))  we use the changememt (√(qx+r))=t ⇒  qx+r =t^2  ⇒qx =t^2 −r ⇒dx =((2t)/q) dt ⇒  I =(2/q)∫  ((tdt)/(p+t)) =(2/q)∫ ((p+t−p)/(p+t))dt =(2/q)t −((2p)/q) ∫ (dt/(t+p))  =(2/q)t −((2p)/q)ln∣t+p∣ +C  =((2(√(qx+r)))/q) −((2p)/q)ln∣p+(√(qx+r))∣ +C   (we suppose q≠0)  if q=0 ⇒I =(x/(p+(√r)))

I=dxp+qx+rweusethechangememtqx+r=tqx+r=t2qx=t2rdx=2tqdtI=2qtdtp+t=2qp+tpp+tdt=2qt2pqdtt+p=2qt2pqlnt+p+C=2qx+rq2pqlnp+qx+r+C(wesupposeq0)ifq=0I=xp+r

Commented by hknkrc46 last updated on 17/May/20

∫(dx/(p+(√(qx+r))))  { ((p+(√(qx+r))=t)),((x=(((t−p)^2 −r)/q))),((dx=((2(t−p))/q)dt)) :}  =(2/q)∫ ((t−p)/t)dt=(2/q)∫(1−(p/t))dt  =((2t)/q)−((2p)/q) ln ∣t∣+C_1 =−ln ∣p+(√(qx+r))∣^((2p)/q) + ln ∣C∣  {ln ∣C∣=C_1 +((2t)/q)}  =ln ∣(C/((p+(√(qx+r)))^((2p)/q) ))∣

dxp+qx+r{p+qx+r=tx=(tp)2rqdx=2(tp)qdt=2qtptdt=2q(1pt)dt=2tq2pqlnt+C1=lnp+qx+r2pq+lnC{lnC∣=C1+2tq}=lnC(p+qx+r)2pq

Answered by john santu last updated on 17/May/20

set (√(qx+r)) = pt ⇒qx+r = p^2 t^2   dx = ((2p^2 t)/q) dt  I= ∫ ((2p^2  t dt)/(q(p+pt))) = ((2p)/q)∫ (t/(1+t)) dt   I = ((2p)/q) ∫ ((t+1−1)/(t+1)) dt = ((2p)/q) (t−ln∣t+1∣ +c  I = ((2p)/q) t − ((2p)/q) ln∣t+1∣ + c   I = ((2p (√(qx+r)))/(pq)) −((2p)/q) ln ∣ ((p+(√(qx+r)))/p)∣ + c   I = ((2 (√(qx+r)))/q)− ((2p)/q) ln ∣((p+(√(qx+r)))/p)∣ + c

setqx+r=ptqx+r=p2t2dx=2p2tqdtI=2p2tdtq(p+pt)=2pqt1+tdtI=2pqt+11t+1dt=2pq(tlnt+1+cI=2pqt2pqlnt+1+cI=2pqx+rpq2pqlnp+qx+rp+cI=2qx+rq2pqlnp+qx+rp+c

Commented by i jagooll last updated on 17/May/20

thank you

thankyou

Commented by peter frank last updated on 04/Jun/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com