Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 94174 by i jagooll last updated on 17/May/20

 { ((x+y = 10)),(((x)^(1/(3  ))  + (y)^(1/(3  ))  = (5/2) ((xy))^(1/(6  )) )) :}   find x &y??

{x+y=10x3+y3=52xy6 findx&y??

Commented bybehi83417@gmail.com last updated on 17/May/20

x=t^6 ,y=s^6   ⇒ { ((t^6 +s^6 =10)),((t^2 +s^2 =(5/2)ts)) :}⇒ { (((t^2 +s^2 )(t^4 −t^2 s^2 +s^4 )=10)),((t^2 +s^2 =(5/2)ts)) :}  ⇒ { (((t^2 +s^2 )[(t^2 +s^2 )^2 −3t^2 s^2 ]=10)),((t^2 +s^2 =(5/2)ts)) :}  ⇒(5/2)ts(((25)/4)t^2 s^2 −3t^2 s^2 )=10⇒t^3 s^3 =((16)/(13))  ⇒ { ((t^6 +s^6 =10)),((t^6 .s^6 =((256)/(169)))) :}    ⇒z^2 −10z+((256)/(169))=0  ⇒z=(t^6 ∨s^6 )=5±(√(25−((256)/(169))))=5±((63)/(13))  ⇒ { ((x=t^6 =5±((63)/(13))=((128)/(13)),(2/(13)))),((y=s^6 =5±((63)/(13))=((128)/(13)),(2/(13)))) :}

x=t6,y=s6 {t6+s6=10t2+s2=52ts{(t2+s2)(t4t2s2+s4)=10t2+s2=52ts {(t2+s2)[(t2+s2)23t2s2]=10t2+s2=52ts 52ts(254t2s23t2s2)=10t3s3=1613 {t6+s6=10t6.s6=256169z210z+256169=0 z=(t6s6)=5±25256169=5±6313 {x=t6=5±6313=12813,213y=s6=5±6313=12813,213

Commented byi jagooll last updated on 17/May/20

thank you both

thankyouboth

Commented byhknkrc46 last updated on 17/May/20

x+y=((x)^(1/3) )^3 +((y)^(1/3) )^3 =((x)^(1/3) +(y)^(1/3) )^3 −3((xy))^(1/3) ((x)^(1/3) +(y)^(1/3) )  =((5/2)((xy))^(1/6) )^3 −3∙((xy))^(1/3) ∙(5/2)((xy))^(1/6)   =((125)/8)(√(xy))−((15)/2)(√(xy))=((65)/8)(√(xy))=10  ⇒ (√(xy))=((16)/(13)) ⇒ xy=((256)/(169))  ⇒ xy=x(10−x)=10x−x^2 =((256)/(169))  ⇒ x^2 −10x+((256)/(169))=0 ⇒ x=((10±(√(100−4∙((256)/(169)))))/2)  ⇒ x= 5±(√(25−((256)/(169))))=5±((63)/(13)) (x,y>0)  ⇒ x=((128)/(13)) , x=(2/(13)) ⇒ y=(2/(13)) , y=((128)/(13))  (1) x=((128)/(13)) ⇒ y=(2/(13))  (2) x=(2/(13)) ⇒ y=((128)/(13))

x+y=(x3)3+(y3)3=(x3+y3)33xy3(x3+y3) =(52xy6)33xy352xy6 =1258xy152xy=658xy=10 xy=1613xy=256169 xy=x(10x)=10xx2=256169 x210x+256169=0x=10±10042561692 x=5±25256169=5±6313(x,y>0) x=12813,x=213y=213,y=12813 (1)x=12813y=213 (2)x=213y=12813

Answered by john santu last updated on 17/May/20

x,y > 0 in ∈R  ((x^2 /(xy)))^(1/(6  ))  + ((y^2 /(xy)))^(1/(6  ))  = (5/2)  ((x/y))^(1/(6  ))  + ((y/x))^(1/(6  ))  = (5/2)  let ((x/y))^(1/(6  ))  = t ⇒ t + (1/t) = (5/2)  2t^2 −5t+2 = 0 ⇒  { ((t = 2)),((t = (1/2))) :}  (1) t = 2 ⇒ x = 64y ; x+y = 10   65y = 10  { ((y=(2/(13)))),((x=((128)/(13)))) :}  (2) t = (1/2)⇒y = 64x ; x+y = 10   { ((x=(2/(13)))),((y=((128)/(13)))) :}  solution {((2/(13)), ((128)/(13))) ; (((128)/(13)), (2/(13)))} .

x,y>0inR x2xy6+y2xy6=52 xy6+yx6=52 letxy6=tt+1t=52 2t25t+2=0{t=2t=12 (1)t=2x=64y;x+y=10 65y=10{y=213x=12813 (2)t=12y=64x;x+y=10 {x=213y=12813 solution{(213,12813);(12813,213)}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com