Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 94310 by mathmax by abdo last updated on 18/May/20

calculate ∫_0 ^1  ((ln(1−x^2 ))/x^2 )dx

calculate01ln(1x2)x2dx

Answered by mathmax by abdo last updated on 19/May/20

another way   by parts u^′  =(1/x^2 ) and v =ln(1−x^2 ) ⇒  I =[(1−(1/x))ln(1−x^2 )]_0 ^1 −∫_0 ^1 (1−(1/x))×((−2x)/(1−x^2 ))dx  =0 +2 ∫_0 ^1 ((x−1)/(1−x^2 ))dx =−2 ∫_0 ^1 ((1−x)/((1−x)(1+x)))dx =−2∫_0 ^1  (dx/(1+x))  =−2[ln∣1+x∣]_0 ^1  =−2ln(2) ⇒ ★ I =−2ln(2)★

anotherwaybypartsu=1x2andv=ln(1x2)I=[(11x)ln(1x2)]0101(11x)×2x1x2dx=0+201x11x2dx=2011x(1x)(1+x)dx=201dx1+x=2[ln1+x]01=2ln(2)I=2ln(2)

Answered by mathmax by abdo last updated on 19/May/20

we have ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1))+c  (c=0) =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−x^2 ) =−Σ_(n=1) ^∞  (x^(2n) /n) and  ((ln(1−x^2 ))/x^2 ) =−Σ_(n=1) ^∞  (x^(2n−2) /n) ⇒∫_0 ^1  ((ln(1−x^2 ))/x^2 )dx  =−Σ_(n=1) ^∞  (1/(n(2n−1)))  let s_n =Σ_(k=1) ^n  (1/(k(2k−1))) ⇒  (s_n /2) =Σ_(k=1) ^n  (1/(2k(2k−1))) =Σ_(k=1) ^n ((1/(2k−1))−(1/(2k)))  =Σ_(k=1) ^n  (1/(2k−1))−(1/2)Σ_(k=1) ^n  (1/k) =H_(2n) −(1/2)H_n −(1/2)H_n   =H_(2n) −H_n ∼ln(2n) +γ +o((1/(2n)))−ln(n)−γ −o^′ ((1/n)) →ln(2) ⇒  lim_(n→∞)  s_n =2ln(2) ⇒∫_0 ^1  ((ln(1−x^2 ))/x^2 )dx =−2ln(2)

wehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c(c=0)=n=1unnln(1x2)=n=1x2nnandln(1x2)x2=n=1x2n2n01ln(1x2)x2dx=n=11n(2n1)letsn=k=1n1k(2k1)sn2=k=1n12k(2k1)=k=1n(12k112k)=k=1n12k112k=1n1k=H2n12Hn12Hn=H2nHnln(2n)+γ+o(12n)ln(n)γo(1n)ln(2)limnsn=2ln(2)01ln(1x2)x2dx=2ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com