Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 94334 by mathmax by abdo last updated on 18/May/20

let f(x) =((sinx)/x)if x≠0  and f(0)=1  1) findf^((n)) (x) and f^((n)) (0)  2)developp f at integr serie st x_0 =0 and x_0 =(π/2)

letf(x)=sinxxifx0andf(0)=11)findf(n)(x)andf(n)(0)2)developpfatintegrseriestx0=0andx0=π2

Answered by abdomathmax last updated on 18/May/20

1)  we have f(x) =((sinx)/x) ⇒f^((n)) (x) =Σ_(k=0) ^n C_n ^k  ((1/x))^((k)) (sinx)^((n−k))   =(1/x)sin(x+((nπ)/2)) +Σ_(k=1) ^n  C_n ^k  (((−1)^k k!)/x^(k+1) )sin(x+(((n−k)π)/2))  2)  we have sinx =Σ_(n=0) ^∞ (((−1)^n )/((2n+1)!))x^(2n+1)  ⇒  ((sinx)/x) =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) x^(2n)

1)wehavef(x)=sinxxf(n)(x)=k=0nCnk(1x)(k)(sinx)(nk)=1xsin(x+nπ2)+k=1nCnk(1)kk!xk+1sin(x+(nk)π2)2)wehavesinx=n=0(1)n(2n+1)!x2n+1sinxx=n=0(1)n(2n+1)!x2n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com